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Abstract 
This deliverable advances the project’s overarching goal of integrating UAVs, Reconfigurable Intelli-
gent Surfaces (RIS), and virtualized RAN (vRAN) to enable intelligent, adaptive, and resource-efficient 
B5G/6G networks. By demonstrating how UAVs can autonomously map wireless coverage using 
probabilistic modeling and uncertainty-driven exploration, it establishes a critical foundation for mo-
bility-aware network optimization. The generated coverage maps can inform RIS configurations, 
guide vRAN resource allocation, and support on-demand UAV deployments for dynamic connectivity 
extension. Together, these capabilities contribute to a coordinated orchestration framework where 
UAV-based sensing, RIS-enabled propagation control, and vRAN virtualization converge to deliver 
highly flexible, energy-efficient, and self-optimizing next-generation wireless networks. 
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Executive Summary 
This deliverable makes a significant contribution to the overall objective of integrating UAVs, 
Reconfigurable Intelligent Surfaces (RIS), and virtualized Radio Access Networks (vRAN) by focusing 
on the creation of high-fidelity wireless coverage maps. These maps, generated through UAV-based 
exploration combined with Gaussian Process modeling, provide a detailed, uncertainty-aware view 
of the radio environment, forming the foundation for data-driven orchestration in B5G/6G networks. 
By enabling UAVs to intelligently collect minimal yet highly informative measurements and 
progressively refine coverage maps, the proposed framework transforms UAVs into autonomous 
sensing agents capable of characterizing dynamic propagation conditions with precision. 

Accurate coverage maps derived from this process are central to the project’s broader vision. They 
can be leveraged to inform RIS configuration, allowing intelligent re-shaping of the propagation 
environment to address coverage gaps or enhance capacity in targeted regions. Similarly, these maps 
provide mobility-aware inputs to vRAN controllers, enabling more effective allocation of virtualized 
resources and adaptive cell reconfiguration based on real-time spatial demand. By linking UAV-
based sensing with probabilistic modeling, this deliverable establishes a scalable and efficient 
mechanism to provide the situational awareness required for joint UAV, RIS, and vRAN coordination. 

In doing so, this work bridges environmental sensing and network control, creating the analytical 
foundation for a closed-loop orchestration framework where UAV-derived coverage maps drive both 
RIS-assisted signal steering and vRAN optimization. This integration is critical for realizing self-
optimizing B5G/6G networks capable of dynamically adapting to user distributions, traffic demands, 
and environmental conditions, ensuring resilient and energy-efficient connectivity in next-generation 
deployments. 
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Introduction 
Recent advancements in aerial industry toward Unmanned Aerial Vehicles (UAVs) paved the way for 
a set of novel use cases in the sky, opening a new range of innovative applications. The varied sizes 
and shapes, coupled with the cost-effectiveness of UAVs, create opportunities in fields like package 
delivery, public safety, and medical support. UAVs can be broadly categorized into different types 
e.g., fixed-wing, rotary-wing, chopper drones, among others [SBM18].  

The evolution of the aerial industry has seen a confluence with cutting-edge technologies like Re-
configurable Intelligent Surfaces (RIS), improving the capabilities of UAVs [LYL+22, YMZ+20, 
MMM+21]. RIS, with its ability to dynamically control and manipulate electromagnetic waves, plays 
a crucial role in enhancing communication and sensing capabilities of UAVs. By integrating RIS into 
the UAV systems, it becomes possible to optimize signal strength, mitigate interference, and adapt 
to dynamic environmental conditions, thereby significantly improving the overall performance and 
reliability of aerial operations. This synergy between UAVs and RIS not only extends the range of 
applications in fields such as surveillance and communication but also unlocks new possibilities in 
autonomous navigation and collaborative aerial missions [RTG+07].  

This deliverable is organized as follows. Section 2 outlines the specific requirements guiding our 
analysis. These requirements encompass both technical specifications and contextual considerations, 
providing a clear framework for evaluating the effectiveness of UAVs and RIS in addressing the chal-
lenges posed by the evolving B5G landscape. Sections 3 and 4 delve into diverse scenarios and the 
subsequent performance evaluation, respectively. Section 3 is subdivided into three key subsec-
tions—UAV Radio, Control Capacity Planning, and Multiple UAVs—each delving into distinct aspects 
of the scenarios under consideration. These subsections lay the groundwork for our subsequent 
analysis by establishing the contextual framework. UAV radio delves into the intricate details of UAVs' 
radio communication aspects. By examining the UAV radio capabilities, we aim to identify strengths 
and limitations that play a pivotal role in shaping communication scenarios within B5G. Control ca-
pacity planning focuses on the packet-level dynamics, this subsection explores the efficiency of data 
transmission and reception in UAV networks. We investigate the packet-level intricacies to better 
understand the data flow and latency aspects crucial for B5G communication. Multiple UAVs envi-
sions a multitude of interconnected devices, understanding the dynamics of multiple UAVs becomes 
imperative. This subsection explores the challenges and opportunities associated with the simulta-
neous operation of multiple UAVs, paving the way for robust communication strategies. 

Section 4 evaluates the performance of UAVs and RIS in B5G scenarios. Subsections within this sec-
tion explore critical KPIs, including Coverage Probability, Power Consumption, Control Dynamics and 
Data Operations, Cooperative UAVs, and RIS Gains. Coverage Probability delves into the coverage 
probability metrics, analyzing the extent to which UAVs and RIS contribute to ensuring reliable and 
expansive network coverage. Insights from this evaluation are essential for optimizing network 
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design to meet the demands of B5G scenarios. Power Consumption presents the power consumption 
patterns of UAVs and RIS, providing an understanding of their energy dynamics and paving the way 
for more energy-efficient solutions. Control Dynamics and Data Operations evaluates the reliability 
metrics, shedding light on the robustness and dependability of UAV and RIS-integrated networks. 
Cooperative UAVs investigates how cooperative efforts enhance overall system performance. This 
collaborative approach aligns with the collaborative nature of the envisioned B5G scenarios. RIS 
Gains focuses on the gains facilitated by Reconfigurable Intelligent Surfaces. By examining the impact 
of RIS on communication quality and efficiency, we aim to uncover the advantages these intelligent 
surfaces bring to the B5G landscape. 

Through this deliverable, we highlight the intricate dynamics of UAV and RIS integration, providing 
a valuable resource for stakeholders navigating the evolving landscape of B5G communication net-
works.  
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1. Creating B5G/6G network coverage maps for better 
management 

One particularly promising application is the use of UAVs for the generation of cartography maps 
that capture key coverage indicators such as Received Signal Strength Indicator (RSSI), Signal-to-
Noise Ratio (SNR), and other essential metrics. This capability is especially critical in areas that are 
difficult to access by humans, as well as in scenarios where cost and time efficiency are paramount.  

 
FIGURE 1: SCENARIO FOR UAV COVERAGE MAPS GENERATION. 

Traditionally, coverage measurements and network optimization efforts rely on ground-based 
surveys that can be resource-intensive, time-consuming, and, in some cases, geographically limited. 
UAVs offer a transformative alternative, providing flexibility and precision while minimizing the 
challenges faced by human operators. Equipped with advanced sensors and communication 
technologies, UAVs can quickly and efficiently map large areas, gathering crucial data on network 
coverage in both urban and rural environments [1]. 

UAVs offer several key advantages in the field of coverage mapping, particularly in challenging 
environments. They excel in areas that are difficult or dangerous for humans to reach, such as 
mountainous terrains, industrial sites, or disaster zones, making them ideal for collecting network 
data where human deployment is impractical or unsafe. Deploying UAVs significantly reduces the 
resources required for traditional methods, as a single UAV can cover large areas in a fraction of the 
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time compared to ground-based teams, speeding up data collection while reducing operational 
costs. UAVs can also be pre-programmed to follow precise routes, ensuring full coverage with 
minimal human intervention. Their ability to fly at controlled altitudes and follow specific paths allows 
for high-precision measurements, capturing a wide range of coverage indicators like RSSI, SNR, 
latency, and throughput. UAVs' flexibility in hovering at specific locations and adjusting altitude 
enables granular data collection, resulting in highly detailed and accurate coverage maps essential 
for network optimization. In addition to static data, UAVs can provide real-time feedback, making 
them invaluable in dynamic environments. For instance, they can monitor network performance 
during events or in fast-changing conditions, such as natural disasters, allowing for immediate 
adjustments to network configurations and improving the overall resilience and adaptability of B5G 
networks [2,3]. 
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2. Challenges 
While the integration of UAVs for coverage mapping in B5G networks offers significant advantages, 
it also presents a range of challenges that need to be addressed for successful implementation. These 
challenges span technical, regulatory, and operational domains. From managing the complexities of 
real-time data transmission with ultra-low latency requirements to ensuring robust collision 
avoidance in increasingly congested airspaces, each aspect requires careful consideration. Moreover, 
challenges related to energy efficiency, path planning, and regulatory compliance add layers of 
complexity to UAV operations, particularly when deploying fleets of drones over large areas or in 
dynamic environments. In the following sections, we will delve into these challenges, exploring the 
technological and strategic hurdles that must be overcome to fully harness the potential of UAVs in 
B5G networks, [4]. 

2.1. Collision avoidance and latency 
Latency and collision avoidance are two critical aspects in the deployment of UAVs for coverage 
mapping in B5G networks, both of which have been explored in depth in previous deliverables. When 
it comes to latency, the ability of UAVs to capture and transmit real-time data is essential for network 
operators who rely on immediate feedback to adjust configurations or identify coverage issues. In 
B5G networks, ultra-low latency is a key requirement, ensuring that UAVs can provide instantaneous 
reporting of coverage indicators such as RSSI or SNR without delay. This is particularly important in 
fast-changing environments, such as during disaster recovery or large-scale events, where network 
conditions can fluctuate rapidly, [5, 6]. 

However, ensuring low latency is only part of the challenge. Collision avoidance is equally crucial, 
particularly when deploying multiple UAVs in the same airspace. The risk of collisions not only 
endangers the UAVs themselves but also compromises the quality and reliability of the data they are 
collecting. Effective collision avoidance mechanisms are vital for maintaining continuous operation, 
particularly in complex or congested environments such as urban areas or emergency situations. 
Previous deliverables have discussed various strategies for collision avoidance, including the use of 
onboard sensors, machine learning algorithms, and communication protocols that allow UAVs to 
share positional data and adjust their trajectories in real time. These technologies ensure that UAVs 
can operate safely near one another, avoiding disruptions to data collection and preserving the 
integrity of the network mapping process [7,8]. 

2.2. Path planning 
Path planning and policy management are integral to the successful deployment of UAVs in B5G 
networks, particularly when it comes to ensuring efficient coverage mapping and data collection. In 
previous deliverables, specifically in the state-of-the-art analysis of Deliverable X, we explored various 
algorithms designed to optimize UAV trajectory and task execution. Among these, Deep 
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Reinforcement Learning (DRL) has emerged as one of the most promising techniques for UAV path 
planning, offering the adaptability and real-time decision-making capabilities required for complex 
environments [9,10]. 

DRL-based algorithms excel in dynamically adjusting UAV flight paths based on real-time conditions, 
such as changes in network coverage, obstacles, and airspace restrictions. By leveraging the 
continuous learning framework of DRL, UAVs can autonomously refine their trajectories to maximize 
data collection efficiency, avoid obstacles, and reduce power consumption. This is especially valuable 
in scenarios where coverage mapping must be done across large or complex terrains, where 
traditional pre-defined flight paths may not be optimal. DRL allows UAVs to navigate such 
environments more effectively, adjusting to unforeseen circumstances and learning from previous 
experiences to improve performance over time. 

In policy management, DRL enables the UAV to make intelligent decisions based on multiple factors, 
such as minimizing latency, ensuring collision avoidance, and optimizing energy consumption. For 
example, the UAV can prioritize specific areas for coverage based on real-time data, such as regions 
where network signal strength is weak or where users are experiencing connectivity issues. 
Additionally, DRL-based systems can enforce policies related to altitude control, speed, and data 
transmission, ensuring that UAVs operate within predefined parameters while still adapting to on-
the-ground realities [11]. 

One of the strengths of DRL in UAV path planning is its ability to consider long-term rewards rather 
than immediate gains. This is particularly useful in scenarios where the UAV needs to balance multiple 
competing objectives, such as maintaining coverage, avoiding obstacles, and conserving energy. The 
ability of DRL to weigh these factors and adapt its decisions dynamically allows for more efficient 
and reliable UAV operations, making it a valuable tool for optimizing network coverage in B5G 
environments. 
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3. Problem Definition  
Having covered the technical aspects of UAV deployment in earlier deliverables, we’ll now focus on 
the data collection process, particularly how we can develop an efficient framework for gathering 
key coverage indicators like RSSI (Received Signal Strength Indicator). The way we model the 
environment is essential in guiding UAVs to collect data efficiently, especially when they’re 
mapping network coverage over complex or remote areas. 

The idea is to create a system that allows UAVs to gather RSSI data while considering factors like 
terrain, obstacles, and how signals behave in different environments. By having a detailed model of 
the area, UAVs can be directed to zones where the signal is likely to be weaker or inconsistent, 
focusing on these problem areas to get a clearer picture of network performance. This makes the 
coverage maps more accurate and helps avoid unnecessary measurements, saving both time and 
battery life. 

In practice, this means UAVs will be able to adjust their paths as they collect data, zeroing in on 
areas with low signal or where they detect sudden changes in strength. The environment model will 
factor in things like buildings, trees, or other physical barriers that might affect signal propagation, 
ensuring that the UAVs can navigate around them and still collect useful data. By focusing on 
smarter, more targeted data collection, this approach ensures that UAVs can gather the most 
valuable information with minimal effort, ultimately helping improve the coverage and quality of 
B5G networks [12], and recent efforts such as UAV experimentation within O-RAN testbeds further 
demonstrate the feasibility of integrating UAV-based measurements into operational RANs [13]. 

3.1. Measurements model 
To model the signal strength measurements, such as RSSI, along a UAV’s path, we will employ 
Gaussian Process (GP) models. These models are highly effective for predicting spatially continuous 
phenomena because they can provide both the predicted value and the uncertainty at each location. 
This makes them particularly useful in creating smooth coverage maps based on discrete UAV 
measurements, filling in gaps where direct measurements are unavailable [14]. 

Gaussian Processes in One Dimension 
A Gaussian process is a collection of random variables, any finite number of which have a joint 
Gaussian distribution. In simpler terms, it’s a generalization of the Gaussian (normal) distribution, not 
just for random variables but for functions. Mathematically, we define a Gaussian process as: 

𝑓(𝑥)	~	𝐺𝑃)𝜇(𝑥), 𝑘(𝑥, 𝑥!)- 

Where: 

• 𝑓(𝑥) is the function we are trying to model (e.g., RSSI as a function of location), 

• 𝜇(𝑥) is the mean function, which represents the expected value of 𝑓(𝑥) at any point 𝑥, 
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• 𝑘(𝑥, 𝑥′) is the covariance function (or kernel), which determines how closely related two 
points 𝑥 and 𝑥′ are. 

In a one-dimensional Gaussian process, 𝑥 represents the position along a path (for example, a UAV’s 
flight path), and we assume that the values of 𝑓(𝑥) at nearby points are more correlated than those 
far apart. This is captured by the kernel function 𝑘(𝑥, 𝑥′), which measures the covariance between the 
function values at two points 𝑥 and 𝑥’. A common choice for the kernel is the squared exponential 
(or radial basis function) kernel: 

𝑘(𝑥, 𝑥′) = 𝜎"# exp5−
(𝑥 − 𝑥!)#

2𝑙#
9 

Where: 

• 𝜎"# is the variance (determining the overall scale of the function’s variation), 

• 𝑙 is the length scale (which controls how rapidly the function can change). 

Given a set of observations {𝑥1, 𝑦1}, {𝑥2, 𝑦2}, … , {𝑥𝑛, 𝑦𝑛} , where 𝑦$ = 𝑓(𝑥$) + 𝜖𝑦$ 	= 𝑓(𝑥$) +
𝜖	(𝑤𝑖𝑡ℎ	𝜖 ∼ 𝑁(0, 𝜎%#)) being measurement noise), the GP model allows us to predict the value of 𝑓(𝑥) 
at a new location 𝑥∗ using the following properties: 

Mean of the Prediction: 

𝜇∗(𝑥∗) = 𝜇(𝑥∗) + 𝑘(𝑥∗, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎%#𝐼]'()𝑌 − 𝜇(𝑋)-,																(1) 

Where: 

• 𝑋 is the vector of input locations, 

• 𝑌 is the vector of observed function values, 

• 𝑘(𝑥∗, 𝑋) is the covariance between the new point 𝑥∗ and the observed points, 

• 𝐾(𝑋, 𝑋) is the covariance matrix between the observed points. 

Variance of the Prediction: 

𝜎∗#(𝑥∗) = 𝑘(𝑥∗, 𝑥∗) − 𝑘(𝑥∗, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎%#𝐼]'(𝑘(𝑋, 𝑥∗),					(2) 

This allows us to not only predict the value of the function at any new location 𝑥∗ but also to quantify 
how uncertain the prediction is based on the available data. The covariance function 𝑘(𝑥, 𝑥′) 
ensures that the predicted values are more strongly influenced by nearby data points. 
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FIGURE 2: TOY EXAMPLE OF GP MEASUREMENT PROCESS IN 1D 

Figure 2 illustrates the application of the Gaussian Process (GP) framework described in the previous 
section to model signal strength (e.g., RSSI or SNR) along a one-dimensional UAV path. The left plot 
shows the true normalized signal decay with distance. The four subplots on the right demonstrate 
how the GP posterior is updated as new measurements are added sequentially at 𝑥	 = 	0, 5, 10, and 
15 meters. 

Each update follows the predictive mean and variance equations introduced earlier (Equations (1) 
and (2)). Initially, with no data, the model relies solely on the prior, leading to high uncertainty. As 
new observations are incorporated, the posterior mean becomes more accurate and the confidence 
intervals shrink, particularly near the observed points—reflecting the spatial correlation encoded by 
the kernel function 𝑘(𝑥, 𝑥′). This exemplifies how GPs can adaptively refine predictions and quantify 
uncertainty in UAV-based signal mapping. 

Gaussian Processes in Two Dimensions 
Extending to a 2D Scenario for Realistic UAV Data Collection 

While a one-dimensional Gaussian process provides valuable insights along a single UAV flight path, 
a more realistic scenario for coverage mapping involves a two-dimensional (2D) environment. In this 
case, we consider a grid where each measurement taken by the UAV at a given location not only 
provides information about that specific point but also affects the predictions at nearby, contiguous 
points. This approach models real-world conditions more accurately, as signals like RSSI typically 
exhibit spatial correlation across both dimensions, latitude and longitude in geographic space [15]. 

Gaussian Processes in Two Dimensions 

When we shift to a more realistic 2D scenario for UAV data collection, things get a bit more practical. 
Instead of just moving along a single path, UAVs cover wider areas, flying over a grid of locations. 
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The goal here is to understand how signal measurements taken at one point can help predict what’s 
happening in the surrounding areas, giving us a better overall map of network coverage. 

In this setup, each time the UAV takes a measurement, that data doesn’t just tell us about the signal 
strength at that exact spot—it also gives clues about what’s going on nearby. For instance, if the 
signal is strong at one location, it’s likely that the signal will be somewhat strong in the surrounding 
areas too, but it may taper off the farther out you go. By using this kind of logic, we can predict 
coverage across the grid, even in places where no direct measurements were taken. 

This approach allows us to gather enough data without having to measure every single point. The 
model helps fill in the blanks by considering how the signal behaves across space, making sure that 
the points close together influence each other. This gives us a more complete view of the area’s 
coverage, which helps with planning and optimizing network performance. 

The Uncertainty Matrix 

For each node in the 2D grid, in addition to the predicted RSSI value, we also have an uncertainty 
value. This is stored in the form of an uncertainty matrix, where each entry corresponds to a grid 
node and reflects the variance 𝜎#(𝑥) at that specific point. The uncertainty matrix provides a clear 
visual representation of which areas of the grid are well understood (low uncertainty) and which 
areas require more data collection (high uncertainty). 

This uncertainty matrix is vital because it will help us develop the positions the UAV must prioritize. 
For example, in regions where the uncertainty is high, the UAV might need to take more 
measurements to reduce this uncertainty and improve the accuracy of the coverage map. Conversely, 
in regions where the uncertainty is low, fewer additional measurements are necessary. 
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4. Methodology 
Figure 3 illustrates the overall workflow of a UAV-based system designed to efficiently map network 
metrics across a two-dimensional area. The goal of this system is to intelligently explore the 
environment, collect a minimal yet informative set of measurements, and use a probabilistic model 
to infer a complete coverage map. This process is structured as a closed-loop interaction between 
the UAV, the environment, and the learning algorithm, enabling adaptive and efficient data 
collection. 

The process begins with the environment, depicted in the leftmost part of the diagram. The 
environment contains a spatial distribution of network signal strength, which is initially unknown to 
the UAV. In the visualization, this environment is represented by a heatmap on a grid, where each 
cell corresponds to a location in the two-dimensional area. Signal sources, such as base stations or 
access points create overlapping regions of coverage, generating a non-uniform RSSI landscape 
across the grid. This underlying signal distribution is what the UAV aims to discover and model. 

To achieve this, the UAV performs a series of measurements at selected grid points. These 
measurements are collected as the UAV flies over the area and are represented by red “X” markers 
on the second heatmap. Each marker indicates a location where the UAV has recorded an RSSI value. 
These discrete observations are passed to a probabilistic model. In this case, a Gaussian Process (GP) 
which is responsible for learning the spatial relationships between the measured points and 
interpolating the signal strength in unvisited regions. The GP model leverages the assumption that 
physically close locations are likely to exhibit similar signal characteristics, allowing it to produce a 
smooth and continuous estimate of the entire signal field, even in areas without direct measurements 
[16]. 

 
FIGURE 3: WORKFLOW OF THE COVERAGE MAP PROCESS 
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The predictions generated by the GP are then used to define the current system state, which includes 
both the estimated coverage map and the associated uncertainty in different regions. This state 
information is sent to a UAV controller module, which determines the next action the UAV should 
take. The controller may use an exploration strategy such as uncertainty-based sampling or 
reinforcement learning to select the most informative next location, balancing the need to explore 
unknown areas with the goal of refining the overall map. The chosen action corresponds to a new 
measurement location for the UAV, which it then visits to obtain another RSSI reading. 

Once the new measurement is acquired, it is added to the dataset, and the GP model is updated with 
the latest information. This update yields a new state, incorporating the refined predictions and 
reduced uncertainty. The loop then repeats: the updated state is passed to the controller, which 
selects the next action, and the UAV continues its exploration. This iterative process allows the UAV 
to progressively build a high-fidelity signal coverage map while minimizing the number of physical 
measurements required. 

The figure also emphasizes that while the example operates over a structured 2D grid, the approach 
can generalize to more complex domains modeled as graphs. Each node in such a graph may 
represent a measurement location such as a street intersection or a critical waypoint in rugged terrain 
while edges capture the spatial or semantic relationship between locations.  

Overall, this closed-loop system demonstrates how UAVs can be used for efficient and intelligent 
data collection in wireless networks. By combining sparse measurements, probabilistic modeling, and 
adaptive control, it is possible to construct detailed coverage maps that support a wide range of 
applications, from network planning to real-time monitoring. 

4.1. UAV Coverage Mapping 
For UAVs collecting data over a 2D area, the goal is to build a comprehensive map of RSSI (or any 
other network metric) across the region. The UAV flies over the area, collecting data at discrete 
locations, which are treated as grid nodes. The GP model then interpolates the RSSI values at all 
other grid points, using the spatial correlations between nearby locations to predict signal strength 
in unmeasured areas. 

This approach allows for efficient data collection since the UAV doesn't need to measure every single 
point on the grid. Instead, it can collect data at strategic locations, and the GP will fill in the gaps 
based on the correlation between the grid points. As a result, we can generate a highly accurate and 
continuous map of network coverage with fewer measurements, saving both time and resources 
while maintaining high-quality predictions across the 2D space. 

The environment we've described as a simple 2D grid is just one example of a graph structure, where 
each node (representing a measurement point) is connected to its neighboring nodes. In more 
complex scenarios, this concept can be generalized to arbitrary graphs, allowing for greater flexibility 
in modeling UAV-based data collection in real-world environments. Unlike a regular grid, nodes in a 
general graph can represent various points of interest, and edges between them can vary in distance, 
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direction, or significance, depending on the landscape. For example, nodes could be street 
intersections in an urban area or vantage points in mountainous terrain, with edges weighted by 
factors like distance or difficulty. The Gaussian process framework can adapt to these complex graphs 
by using graph distances instead of simple physical distances to model relationships between points, 
enabling more accurate signal propagation predictions in real-world settings. 

 

 
FIGURE 4: GRAPH CONSTRUCTION 

Optimizing Measurement Locations on a Graph 

By treating the environment as a graph rather than a strict grid, we can strategically choose where 
to place measurement nodes to better fit the setting. In practice, this means that UAVs can be 
programmed to take measurements at key nodes on the graph, rather than blindly following a grid 
pattern. For example: 

In densely populated areas, measurements might be concentrated at important intersections where 
network performance is critical. 

In sparsely populated regions, fewer nodes may be required, but these nodes could be positioned 
to cover key points like high-traffic roads or remote access points. 

By designing a custom graph that reflects the actual environment and network needs, we can 
optimize the UAV’s flight path and data collection process. The Gaussian process will still interpolate 
the signal strengths across the graph, predicting values at nodes where no measurements were 
taken, but now the model fits the specific characteristics of the area. 

4.2. Collection process models 
In our approach to collecting RSSI data for network coverage mapping, the UAV is assumed to 
operate with two key actions: it can either move to a nearby node in the grid or stay at its current 
location to take more precise measurements. This dual strategy of balancing between movement 
and focused measurement, allows for flexible and adaptive data collection, improving both the 
quality of individual measurements and the efficiency of overall coverage. 

The UAV moves across a predefined graph, with each node representing a location where RSSI 
measurements can be collected. Movement between nodes is assumed to occur at a constant speed, 
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which simplifies the modelling of flight dynamics. This speed ensures that the UAV can efficiently 
cover large areas of the grid, making it suitable for wide-area coverage mapping. 

By moving from node to node, the UAV can quickly gather a general sense of the network’s signal 
strength over the entire region. This is particularly useful in areas where signal propagation is 
relatively uniform, as fewer measurements at each node may be sufficient to construct an accurate 
map. Movement-based data collection allows for faster coverage of the grid and helps to identify 
general trends in network performance across large areas. 

In some cases, rather than moving to a new location, the UAV might benefit from staying at its current 
node for a longer period to take additional measurements. This is particularly valuable in areas where 
signal strength is highly variable or where the initial measurements show significant uncertainty. 

By staying at the current node, the UAV can collect more samples of the RSSI, improving the accuracy 
of the measurement at that specific point. This can reduce the impact of temporary fluctuations in 
signal strength, providing a more reliable and stable estimate of the RSSI at the given node. More 
precise measurements also help to reduce the uncertainty associated with that node, which is 
reflected in the uncertainty matrix discussed earlier. 

Heuristic algorithm 
To begin the measurement process on the graph, we first design a heuristic algorithm that focuses 
on moving the UAV to nearby nodes where the uncertainty of the signal strength is high. The core 
idea is simple: as the UAV collects data, the Gaussian Process model estimates the signal strength 
across the grid, but the predictions for nodes without direct measurements will naturally have higher 
uncertainty. 

Our heuristic algorithm leverages this by prioritizing the nodes with the highest uncertainty that are 
closest to the current position of the UAV. After taking a measurement at one node, the UAV then 
moves to a neighbouring node where the model predicts the greatest uncertainty, refining the 
coverage map as it goes. This approach helps ensure that the UAV efficiently reduces uncertainty in 
local areas, incrementally improving the accuracy of the overall map without having to cover large 
distances between measurements. 

The model we’ve developed has two versions, each with a different level of decision-making ability 
for the UAV, depending on how much of the surrounding area it can assess. 

In the first version, the UAV can only “see” the uncertainty levels of its immediate neighbours. After 
it takes a measurement, it looks at the nearby nodes and moves to the one with the highest 
uncertainty. This keeps the UAV’s decision-making simple and focused on what’s right in front of it, 
allowing it to make quick, localized decisions. 

The second version gives the UAV a broader view by allowing it to consider not just the immediate 
neighbours, but also the "neighbours of neighbours." This wider perspective helps the UAV make 
more informed choices, even if it means flying a little further. It can see where uncertainty is highest 
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in a larger area and can prioritize those spots, which might speed up the process of reducing overall 
uncertainty across the network. 

Reinforcement Learning 
Deep reinforcement learning lifts the coverage-mapping task from a rule-driven routine to an 
experience-driven optimisation problem, enabling the UAV to discover sophisticated behaviours that 
a hand-crafted heuristic is unlikely to capture. Whereas a static rule set must strike a single, 
conservative balance between “measure” and “move” for every terrain, propagation environment and 
battery budget, a DRL policy watches the evolving Gaussian-process uncertainty landscape in real 
time and adjusts its strategy step-by-step, choosing to linger only where the expected information 
gain per joule is high and otherwise pressing forward to unexplored regions. Because the reward 
explicitly prices both variance reduction and resource expenditure, the agent learns subtle trade-offs, 
such as skipping low-value detours, clustering extra samples along fast-fading canyon walls, or 
exploiting tailwinds to reach distant high-uncertainty pockets before the battery sags, that are 
invisible to a fixed threshold. Over dozens of simulated flights, the neural policy internalises the 
spatial statistics of path loss, the noise floor of its own receiver and even the cost of sharp 
manoeuvres, so that when it is deployed in a new but similar environment it immediately exhibits 
near-optimal behaviour without manual retuning. Moreover, the function-approximation capacity of 
DRL lets the agent extrapolate beyond the training graph: if sudden interference spikes inflate 
variance in a previously “mapped” sector, the policy can recognise the anomaly, return for a quick 
verification sweep, and then resume its mission, all without any explicit contingency code. In short, 
DRL converts the UAV from a deterministic sampler into an adaptive explorer that continuously 
weighs information value against operational cost, delivering denser maps where they matter, leaner 
traversals where they do not, and uniformly higher mapping quality per unit flight time. 

A deep-reinforcement-learning (DRL) formulation treats the coverage-measurement mission as 
a finite-horizon Markov-decision process. The agent is the UAV itself; every decision step 𝑡  it 
perceives a state vector 

𝑠) = [𝑣) , 𝜇)(𝑉), 𝜎)(𝑉), 𝑒) , 𝑡] 

where 𝑣) is the index of the current graph node, 𝜇)(𝑉) and 𝜎)(𝑉) are, respectively, the GP posterior 
mean and variance (or compact summaries such as “maximum remaining variance” and a binary 
mask of “mapped” nodes), and 𝑒)  is the remaining energy or flight time. Because the world is 
naturally a graph 𝐺 = (𝑉, 𝐸), we embed 𝑠) with a graph neural encoder so that spatial correlations 
and neighbourhood structure are preserved before feeding the result to the policy/value networks. 

The action set is deliberately small to mirror the heuristic: 

1. Measure – remain at 𝑣)  and acquire a new RSSI sample 𝑦) = 𝑓(𝑣)) + 𝜖 , updating the GP 
posterior with Equations (1)–(2). 

2. Move – choose one adjacent node 𝑣! ∈ 𝒩(𝑣)) and fly there, consuming time and energy but 
adding no new data. 
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Transitions are straightforward: a measure action leaves the position unchanged and updates the 
posterior; a move action updates the position and decrements the energy budget while the posterior 
remains the same. 

The reward encourages rapid, informative mapping while discouraging wasteful motion: 

𝑟) = [𝐼)*)(𝑡) − 𝐼)*)(𝑡 + 1)] − 𝜆+1{+*-.} − 𝜆.Δ𝑒) 

where 𝐼)*)(𝑡) = ∑ 𝜎)#(𝑣)-∈1  is the total posterior uncertainty, the first term therefore measures 
information gain, and 𝜆+, 𝜆. > 0 weight the costs of motion and energy usage. 

The objective is to maximise the expected discounted return: 

max
2!

𝔼2! `a𝛾)𝑟)

3

)45

c 

with discount factor 𝛾 ∈ (0,1]. Because the action space is discrete and small, algorithms such as 
Deep Q-Networks are adequate, but actor-critic methods (e.g. PPO) offer smoother updates and, 
paired with graph encoders, scale to larger maps. The policy network 𝜋6(𝑎 ∣ 𝑠) learns when the 
marginal value of an extra measurement outweighs its opportunity cost, and when it is more 
profitable to explore high-uncertainty regions. 

Episodes terminate either when the map meets the confidence goal or when the time-/energy 
budget is exhausted. Once training converges, the learned policy generalises to unseen areas with 
similar propagation statistics, adapting measurement density on-the-fly instead of relying on fixed 
heuristic thresholds. 

4.3. Coverage map creation 
The performance of the SorusBoxScan platform was validated through a real-world measurement 
campaign designed to assess its ability to produce accurate coverage maps. For this purpose, the 
device was mounted inside a vehicle and operated alongside a commercial smartphone, the 
Samsung Galaxy S23 Ultra, running the G-NetTrack Lite application. Running both systems in parallel 
under identical conditions provided a robust methodology for cross-validation. By comparing the 
measurements obtained with the SorusBoxScan against those from a widely used industry tool, the 
experiment ensured that the platform’s results could be trusted for reliable coverage analysis. 

During the campaign, the vehicle followed a predefined route that traversed areas with different 
coverage conditions, including strong outdoor signals, weaker regions near urban obstacles, and 
sections where mobility triggered handovers between cells. The SorusBoxScan collected metrics 
through its integrated workflow, publishing them via MQTT, while the smartphone logged its 
readings directly through the application. After the campaign, both datasets were processed to 
generate coverage maps showing the average Reference Signal Received Power (RSRP) values along 
the route. A shared color scale was applied, ranging from red for weak coverage (below –100 dBm) 
to green for strong coverage (better than –80 dBm), enabling a direct visual comparison between 
the two devices. 
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The resulting maps reveal a high level of consistency between the smartphone and the SorusBoxScan 
platform. In both cases, strong coverage areas appear in green, while weaker zones, such as those 
around Parla and near the tunnel sections, are clearly visible in orange and red. This alignment 
demonstrates that the SorusBoxScan system can replicate the behavior of a commercial smartphone 
and, crucially, transforming its measurements into coverage maps that faithfully represent real-world 
network conditions. A closer look also shows that the SorusBoxScan maps present smoother 
transitions between coverage levels, suggesting that its data handling pipeline produces stable 
results even under rapidly changing conditions. 

An additional advantage of the methodology was the ability to collect measurements across multiple 
frequency bands, including LTE bands b0, b3, b7, b8, and b20, as well as the 5G New Radio band n78. 
When mapped, these results highlight the distinct characteristics of each band: low-frequency bands 
like b8 and b20 offered wide coverage and strong penetration, while higher-frequency bands such 
as b7 and n78 provided higher capacity but with a more fragmented footprint. By representing these 
differences visually, the maps clearly illustrate the trade-off between coverage and capacity across 
technologies. This multi-band mapping capability makes the SorusBoxScan platform a versatile tool 
for evaluating modern network deployments. 

The creation of these coverage maps also demonstrates the flexibility of the data pipeline. 
Measurements can be monitored live using an MQTT client, enabling immediate visualization of 
coverage during a campaign. They can also be processed programmatically through the 
SorusBoxScan SDK, making it possible to automate map generation or integrate the results into 
custom analysis workflows. Finally, by storing results in a database, maps from different campaigns 
can be aggregated to build long-term coverage models and track how performance evolves over 
time. 

In summary, the campaign confirmed that the SorusBoxScan platform can reliably generate coverage 
maps that match those obtained with a commercial smartphone, while also offering greater flexibility 
for data processing and integration. Its ability to capture multi-band behavior, operate robustly 
under mobility conditions, and provide reusable data workflows makes it a practical and powerful 
solution for researchers and operators interested in visualizing and optimizing mobile network 
coverage. 

 
FIGURE 5: SORUSBOXSCAN DATA COLLECTION AND PROCESSING WORKFLOW 
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5. Evaluation 

5.1. Coverage map creation - Gaussian Process 
In this section, we present the results of our evaluation, focusing on the heuristic model among the 
two proposed collection process strategies. While deep reinforcement learning (DRL) offers clear 
advantages in terms of adaptability and experience-driven optimisation, its evaluation requires 
extensive training episodes, significant computational resources, and precise environment modelling 
to ensure reliable convergence and reproducibility. Given the scope of this deliverable, which 
prioritises validating the feasibility of our data collection framework and providing actionable insights 
under realistic constraints, we opted to assess the heuristic model first. This choice allows us to 
establish a strong performance baseline using a lightweight, interpretable strategy that does not 
depend on specialised training infrastructure. Moreover, by isolating the heuristic model, we can 
clearly quantify the improvements that DRL-based methods may bring in future work, where their 
ability to dynamically balance exploration and energy expenditure can be rigorously benchmarked 
against this baseline. The following results therefore focus on the heuristic approach, providing a 
foundation for subsequent comparisons with DRL-enhanced policies. 

The environment used for evaluating the collection process models is illustrated in Figure 5. It is 
represented as a 2D grid where each cell corresponds to a discrete location in the area of interest, 
and the color intensity reflects the underlying signal strength or measurement value (e.g., received 
power or information density) at that point. This environment includes two distinct high-value 
regions (visible as bright yellow-green clusters) embedded within a lower-value background. These 
regions simulate areas of higher RSSI where additional measurements are particularly valuable.  

 
FIGURE 6: SIMULATION ENVIRONMENT 
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The first algorithm follows a simple exhaustive approach: the UAV sequentially visits every grid node 
in the environment and collects a measurement at each location. This method provides a 
comprehensive coverage of the area and establishes a performance baseline for evaluating more 
advanced collection strategies. 

Figures 6 and 7 illustrate the evolution of the predicted Signal-to-Noise Ratio (SNR) and its 
associated uncertainty across the environment as measurements are progressively gathered. 

• Initial state: At the beginning (Figure 6), no measurements have been taken. The predicted 
SNR is uniformly uninformative, and the uncertainty is maximal across the entire grid, 
reflecting the absence of prior knowledge. 

• Intermediate stage: As the UAV moves and collects measurements (Figure 7), the predicted 
SNR begins to align with the underlying environment in the explored regions. Uncertainty 
decreases locally around visited nodes but remains high in unvisited areas. 

• Final state: After completing the full traversal (Figure 8), the predicted SNR closely matches 
the true environment, and uncertainty is minimized throughout the grid. This demonstrates 
that exhaustive sampling effectively maps the environment but incurs significant flight time 
and energy cost. 

While this baseline guarantees maximum accuracy, its inefficiency underscores the need for smarter 
strategies that selectively sample high-value regions or dynamically adapt flight paths to reduce 
resource expenditure while preserving mapping fidelity. 

 
FIGURE 7: INITIAL STATE 
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FIGURE 8: RESULTS OF THE PASSING THOUGH ALL THE NODES 

Figures 6-8 illustrate the progression of the heuristic algorithm, which selectively samples nodes 
based on uncertainty thresholds adjusted for their position (corner, edge, or inner) and evaluates 
both immediate and second-neighbor uncertainties when planning its next move. 

• Initial state: The same as the one inf Figure 6. 

• Intermediate stage: In Figure Y, the UAV begins to traverse the grid more strategically, 
focusing on areas where uncertainty remains concentrated. The predicted SNR gradually 
aligns with the true underlying map, particularly around the two high-value regions, while 
large swathes of low-value areas remain unsampled. Importantly, the second-neighbor 
evaluation enables more efficient planning: rather than exhaustively sampling every node, the 
UAV skips low-information points and moves toward regions where both direct and second-
neighbor uncertainties indicate high potential for variance reduction. 

• Final state: By the end of the run (Figure Z), the predicted SNR closely matches the 
environment while the uncertainty has dropped significantly, especially around the two 
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Gaussian peaks. Although some residual uncertainty remains in less critical zones, this 
approach achieves comparable mapping fidelity with substantially fewer measurements and 
reduced traversal length compared to the exhaustive baseline. 

 

 
FIGURE 9: RESULTS OF THE ALGORITHM KNOWING THE UNCERTAINTY 

 

Overall, the heuristic algorithm demonstrates that adaptive, uncertainty-driven sampling,combined 
with position-aware thresholding, can effectively balance mapping accuracy and resource efficiency. 
It produces an accurate environmental representation while minimizing redundant measurements, 
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laying a strong foundation for future integration with more advanced policies such as deep 
reinforcement learning. 

5.2. Coverage map creation - Real Measurements 
An important outcome of the validation campaign is illustrated in the comparative coverage maps 
shown above. On the left, measurements obtained with the Samsung Galaxy S23 Ultra using G-
NetTrack Lite are presented, while the right-hand figure shows the same route measured with the 
SorusBoxScan device. In both cases, the average Reference Signal Received Power (RSRP) is displayed 
using a color scale ranging from deep red for very weak signals (below –100 dBm) to dark green for 
strong coverage (better than –80 dBm). This visual comparison provides a clear indication of the 
consistency between the two measurement platforms under real mobility conditions. 

The results reveal a strong correlation between the readings of the commercial smartphone and the 
SorusBoxScan device. Segments of the route with weak coverage, particularly around the town of 
Parla and the southern sections near the tunnel areas, appear as red or orange in both maps, 
confirming the reliability of the SorusBoxScan platform in detecting low-signal regions. Likewise, 
areas with consistently good coverage, where RSRP remains above –85 dBm, are captured in green 
by both devices. The visual alignment across the entire measurement route demonstrates that the 
SorusBoxScan system can replicate the behavior of a professional-grade tool, even when deployed 
in a lightweight and flexible setup. 

A closer inspection of the maps also highlights the benefits of using a dedicated measurement 
platform. The SorusBoxScan visualization on the right shows slightly smoother transitions between 
coverage categories, with less sporadic fluctuations compared to the smartphone data. This suggests 
that the SorusBoxScan’s measurement pipeline, combined with its data buffering and publishing 
architecture, is capable of producing stable results even in areas with rapid coverage changes. Such 
stability is particularly important for long-duration campaigns or when measurements are used to 
build aggregate coverage models. 

Overall, this comparison provides strong evidence of the validity and practicality of the SorusBoxScan 
system. By producing results that match those of a commercial smartphone application while offering 
additional flexibility in data handling and integration, the platform proves its value as a research and 
monitoring tool. The ability to capture and visualize coverage along real-world routes ensures that 
the device can be confidently used for advanced studies in mobile network performance, coverage 
optimization, and UAV-based measurement campaigns. 
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FIGURE 10: COMPARISON OF COVERAGE MAPS GENERATED BY A COMMERCIAL SMARTPHONE (LEFT) AND 

THE SORUSBOXSCAN DEVICE (RIGHT), SHOWING AVERAGE RSRP VALUES ALONG THE SAME ROUTE 
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6. Summary and Conclusions 
This deliverable presented a UAV-based framework for efficiently creating wireless network coverage 
maps, focusing on its role in B5G/6G network management. The system integrates UAV-based data 
collection, probabilistic modeling using Gaussian Processes (GPs), and adaptive control strategies, 
forming a closed-loop workflow that iteratively improves coverage predictions while minimizing the 
number of measurements required. 

We began by outlining the motivation for intelligent coverage mapping in emerging wireless 
networks, where traditional static mapping approaches are inadequate due to increasing network 
complexity, diverse service requirements, and dynamic propagation environments. UAVs offer a 
flexible and cost-effective platform for collecting measurements across challenging or wide-area 
terrains, while probabilistic models such as GPs provide a principled way to interpolate sparse 
measurements and quantify uncertainty in the predicted signal maps. 

The challenges inherent to this task—such as collision avoidance, latency constraints, and efficient 
path planning—were discussed, emphasizing the need for autonomous strategies capable of 
balancing exploration and energy constraints. These challenges informed the formal definition of the 
problem, which was modeled as an iterative exploration task over a discrete grid (or graph) where 
each UAV action involves selecting a measurement point to reduce uncertainty in the coverage map. 

To address this, we implemented two collection process models: 

- Heuristic algorithm: A position-aware, uncertainty-driven approach that adjusts sampling 
thresholds based on node connectivity (corner, edge, inner) and considers both immediate 
and second-neighbor uncertainties. This method efficiently reduces uncertainty with fewer 
measurements compared to exhaustive traversal. 

- Reinforcement Learning (RL): Although not evaluated within this deliverable due to its high 
computational cost and training requirements, RL was proposed as a future extension capable 
of learning environment-specific strategies that optimize exploration-exploitation trade-offs 
beyond heuristic rules. 

The Gaussian Process-based modeling component was detailed for both one- and two-dimensional 
cases, demonstrating how GPs interpolate signal strength between sampled locations while 
maintaining a rigorous estimate of uncertainty. This capability is critical for guiding UAV exploration, 
as it identifies where additional measurements are most valuable. 

In the evaluation, we demonstrated the system’s effectiveness in progressively refining coverage 
maps through UAV-based sampling. The heuristic algorithm successfully prioritized high-uncertainty 
regions, achieving accurate reconstruction of the underlying environment with significantly fewer 
measurements than exhaustive approaches. The results confirmed the viability of combining UAV 
mobility with GPs for efficient network coverage mapping and established a strong baseline for 
future RL-driven strategies. 
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Finally, while this deliverable focused on simulation-based validation, the framework is designed to 
extend naturally to real-world wireless deployments. Its generalization to graph-based environments 
also opens opportunities for coverage mapping in structured urban areas, rugged terrains, and 
indoor industrial settings, where grid discretization may be impractical. 

In conclusion, this work demonstrates that UAVs, coupled with probabilistic modeling and adaptive 
sampling strategies, can deliver intelligent, resource-efficient network coverage mapping—an 
essential capability for B5G/6G networks. Future work will involve integrating reinforcement learning 
for dynamic policy optimization, incorporating collision avoidance and latency-aware control 
mechanisms, and validating the framework with real-world UAV flights and measurement data. 
Together, these steps will move this approach toward deployment-ready solutions that support 
predictive, self-optimizing network management in next-generation wireless systems. 
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Annex – installation of the SorusBoxScan  
This guide explains how to set up a SorusBoxScan device so that it can connect to a mobile network 
and stream geo-tagged radio metrics to an MQTT broker. While the original documentation provides 
concise installation steps, here we expand on those instructions by explaining why each step matters, 
adding troubleshooting advice, and describing best practices for field deployments. Particular 
attention is given to the Waveshare SIM8200EA-M2 5G HAT, which is powered by the SIMCom 
SIM8200EA-M2 5G NR module. Understanding the characteristics of this hardware is essential 
because the quality of connectivity and measurement reliability depend heavily on how the device is 
configured, powered, and mounted. 

Prerequisites 
Before beginning the installation process, ensure that the hardware is properly assembled and all 
connections are secure. The SIM card must be inserted into the HAT, but keep in mind that SIMs with 
PIN codes enabled are not supported by the software stack; you should disable the PIN beforehand. 
The operating system should be Ubuntu, installed either on the drone’s onboard computer or on a 
companion single-board system, and you should have root access either directly or via SSH. Finally, 
it is critical to connect the supplied cellular and GNSS antennas and position them so that they are 
not obstructed by metal surfaces or nearby electronics, as this can cause severe RF interference and 
loss of signal quality. 

Connecting to the Mobile Network 
In order to bring up the mobile data connection, the first step is to install the required QMI userspace 
tools. On Ubuntu, this is done with a simple `apt update` followed by the installation of `libqmi-utils` 
and `udhcpc`. Once these are in place, you should create a small helper script, often named 
`startnet.sh`, which initializes the modem, brings up the WWAN interface, and requests an IP address. 
The script typically calls `qmi-network /dev/cdc-wdm0 start`, followed by commands to activate the 
interface (usually `wwan0`) and acquire an IP lease. 

Some operators require a specific APN to be set in `/etc/qmi-network.conf`. For instance, Movistar 
Spain requires the APN string `telefonica.es`. If your operator has different requirements, update the 
configuration file accordingly. It is also worth noting that `/dev/cdc-wdm0` is the QMI control device 
used to communicate with the modem, while ̀ wwan0` is the associated network interface. Depending 
on how your system enumerates the hardware, the interface may appear as `wwan1` or another 
name. For persistent connectivity, especially when running unattended on a drone, you may want to 
create a systemd unit to launch this script automatically after the USB device is detected. 

Installing the Control Software 

The control software is distributed as a Snap package. This Python-based daemon communicates 
with the HAT through AT commands and converts the raw data into structured, geo-tagged metrics 
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for MQTT. Two commands are central: `AT+CGPSINFO=1`, which activates continuous GNSS 
streaming for location and movement data, and `AT+CPSI=1`, which reports the current radio access 
technology, frequency band, and signal quality indicators. 

To install the software, download the `.snap` release from GitHub and install it with the Snap 
command line, using the `--dangerous` flag because the package is unsigned. If you want to make 
custom modifications, you can clone the repository, install Snapcraft and Git, and build your own 
`.snap` file. This is useful if you wish to add new AT commands, change reporting intervals, or adapt 
the software to your broker’s data model. 

Configuring MQTT Broker Settings 
Once the snap is installed, you must configure the service so that it points to your MQTT broker. This 
is done with the `snap set` command, where you specify the broker’s host, port, username, and 
password. You can enter each parameter separately or combine them in a single command. After 
updating the configuration, restart the daemon so that the changes take effect. From this point 
forward, all collected metrics will be published to the specified broker under the configured 
credentials. 

If the device does not connect as expected, several steps can help diagnose the problem. Increasing 
the logging level to `DEBUG` and restarting the service will generate detailed logs, which you can 
follow in real time using `journalctl`. If no IP address is assigned, the most common causes are a 
missing or incorrect APN, a SIM card not being recognized, or the QMI device node not appearing 
in `/dev`. In such cases, check the output of `lsusb` to verify that the SIMCom module is enumerated 
properly. For GPS issues, reposition the GNSS antenna with a clear view of the sky and double-check 
that it is connected to the correct port. 

SIM8200EA-M2 5G HAT, Technical Notes 
The SIM8200EA-M2 5G HAT is built around SIMCom’s SIM8200EA-M2 module, which uses the 
Qualcomm Snapdragon X55 modem. The module follows the M.2 3052 form factor and exposes a 
USB 3.1 data interface to the host. When used with a Raspberry Pi 4 or 5, it is critical to connect the 
board to a native USB 3 port in order to achieve high throughput and stable operation. 

The module supports a wide range of 5G NR, LTE, and WCDMA frequency bands, though availability 
depends on your regional variant and operator certification. It also integrates a powerful GNSS 
receiver capable of using multiple constellations simultaneously. Proper antenna placement is crucial: 
the GNSS antenna should be mounted separately from the cellular antennas by at least ten 
centimeters to avoid interference. The HAT typically breaks out multiple antenna ports to support 
MIMO and positioning, and only matched 50-ohm antennas should be used to prevent detuning or 
high VSWR. 

Power requirements are another important consideration. Under 5G bursts, the module may draw 
over two amperes at five volts, which means that a high-quality power supply capable of at least 
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three amperes is strongly recommended. Insufficient power can cause USB resets or unexpected 
disconnections. For drones, this implies careful power budgeting, since both motors and radio 
hardware may peak at the same time. Thermal management is also necessary: under sustained data 
transfer, the module will generate significant heat, so airflow or heatsinking should be planned in 
advance. 

 
FIGURE 11: SORUSBOXSCAN MEASUREMENT DEVICE PROTOTYPE 

From a deployment perspective, field practitioners should avoid cheap USB hubs and instead use 
direct, shielded USB 3 cables. The module’s reset and flight mode pins allow recovery from unusual 
states, but in practice, a complete power cycle is sometimes the most effective method. When 
deploying on drones, antennas should be mounted vertically and kept away from carbon fiber frames 
or other conductive surfaces that can detune them. Short, low-loss coaxial cables with proper strain 
relief are preferred, especially in vibrating airborne environments. Finally, always confirm that your 
operating bands are legal in your region, and where possible, use antennas certified by the network 
operator. 

Once operational, the HAT continuously streams GNSS data once per second and reports radio 
information through `+CPSI`. The software daemon merges these two data sources and generates 
MQTT messages where each radio measurement is tagged with a geographic position and 
timestamp. If the modem reports multiple carriers or bands simultaneously, the daemon emits 
multiple MQTT messages, each representing a distinct radio context but sharing the same spatial 
and temporal tags. This ensures that the dataset remains consistent and easy to correlate with 
coverage maps or flight telemetry. 

Finally, when deploying a SorusBoxScan device, it is important to secure the data pipeline. Always 
configure MQTT with TLS, typically on port 8883, and assign unique credentials to each device 
rather than reusing a single account. Restrict publishing rights so that the device can only write to 
the necessary topics and rotate credentials periodically. Credentials should be stored only in the 



SORUS-DRONE-A3.1-E2 36 
   

  

Snap settings, never in plaintext scripts. To maintain security, update Ubuntu regularly and refresh 
installed Snaps so that both the system and application receive the latest patches. 


