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Abstract 
This document presents key innovations for integrating High Altitude Platform Systems (HAPS) into 
non-terrestrial networks (NTN) aligned with 3GPP and 6G standards. It highlights the application of 
advanced AI and machine learning algorithms, such as reinforcement learning, to optimize resource 
allocation, routing, network slicing, and mobility management in highly dynamic NTN environments. 
The work introduces efficient frame transmission strategies for LEO satellites and HAPS, including 
“withhold scheduling,” which balances data loads across ground stations to improve throughput and 
latency. Deep reinforcement learning agents are developed for optimal routing, adapting to real-time 
changes in network topology and congestion. A modular drone platform equipped with edge 
computing and 5G connectivity is designed and deployed to validate these innovations in real-world 
NTN scenarios. The document also analyzes the stringent bandwidth, latency, and reliability 
requirements of emerging AR/VR applications, informing the design of MEC-enabled HAPS nodes 
for distributed caching and processing. A convergent NTN-6G architecture is proposed, integrating 
MEC at HAPS nodes to support seamless handovers and ultra-low latency. Conclusions emphasize 
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the need for holistic co-design of algorithms, hardware, and standards, and identify future research 
directions in scalable AI, open interfaces, post-quantum security, and advanced materials for HAPS 
platforms. These contributions form a comprehensive roadmap for scalable, reliable, and high-
performance NTN integration towards 6G. 
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Resumen Ejecutivo 
La integración de plataformas de gran altitud (HAPS) en redes no terrestres (NTN) hacia 6G 
representa un desafío y una oportunidad para la evolución de las telecomunicaciones globales. Este 
documento sintetiza los principales avances e innovaciones desarrolladas durante el proyecto 6G-
INTEGRATION-3 que ayudarán en la integración y convergencia  entre infraestructuras terrestres y 
no terrestres, abordando tanto retos técnicos como soluciones prácticas para la próxima generación 
de redes móviles 6G. 

En primer lugar, se destaca el uso de algoritmos avanzados de inteligencia artificial y aprendizaje 
automático, en particular el aprendizaje por refuerzo (Reinforcement Learning, RL), para la 
optimización dinámica de la búsqueda de rutas ópticas de las NTNs. Estos algoritmos permiten 
modelar y resolver problemas complejos de enrutamiento, gestión de movilidad y segmentación de 
red en entornos altamente variables, como los que presentan las constelaciones de satélites LEO y 
las plataformas HAPS en movimiento. 

Uno de los principales aportes es la propuesta e implementación de estrategias de transmisión 
eficiente de tramas en enlaces HAPS-satélite-tierra. Se introduce el concepto de “withhold 
scheduling”, que permite balancear las colas de datos entre estaciones terrestres y reducir la 
latencia general del sistema, superando así los enfoques tradicionales de transmisión inmediata y 
maximizando el throughput global de la red. 

El documento también aborda la importancia de la sincronización distribuida y la gestión de los 
efectos Doppler, fundamentales en escenarios donde los nodos de la red (satélites, HAPS, UAVs) 
presentan movilidad a gran velocidad. Se proponen técnicas específicas para mantener la fiabilidad 
del canal y minimizar los errores de transmisión, esenciales para aplicaciones críticas y 
comunicaciones ultra fiables de baja latencia (URLLC). 

En el ámbito experimental, se detalla el diseño y despliegue de una plataforma dron modular, 
equipada con edge computing (Jetson Orin), router 5G y sensores Lidar, que permite validar en 
campo los algoritmos y arquitecturas propuestos. Esta plataforma facilita la experimentación realista 
en escenarios NTN. 

El documento profundiza en el análisis de los requisitos de aplicaciones avanzadas, como la 
realidad aumentada y virtual (AR/VR), que serán determinantes en la demanda de capacidad y 
latencia en las redes 6G. Se presentan resultados experimentales con dispositivos VR/AR Meta 
Quest 3, evidenciando necesidades de hasta 1 Tbps para aplicaciones holográficas y latencias 
inferiores a 2 ms para feedback háptico, junto con exigencias de fiabilidad extrema en los enlaces 
HAPS-terrestres. 

Como elemento innovador, se propone una arquitectura convergente que integra capacidades de 
Multi-access Edge Computing (MEC) en los nodos HAPS, permitiendo el cacheado distribuido de 
contenidos, procesamiento local de flujos AR/VR y una gestión inteligente de handovers entre 
segmentos satelitales, HAPS y terrestres. Esta aproximación reduce la latencia y mejora la 
experiencia de usuario en aplicaciones de nueva generación. 

Finalmente, el documento subraya la necesidad de una coordinación estrecha entre el diseño 
algorítmico, la innovación en hardware y la validación experimental para afrontar los retos de 
movilidad 3D, variabilidad de canal y coexistencia espectral en NTNs. Las contribuciones recogidas 
sientan las bases técnicas para el despliegue masivo y eficiente de HAPS en el ecosistema 6G, 
posicionando estas plataformas como un pilar esencial de la conectividad global futura. 
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Executive Summary 
The integration of high altitude platforms (HAPS) into non-terrestrial networks (NTN) towards 6G 
represents both a challenge and an opportunity for the evolution of global telecommunications. This 
paper synthesizes the main advances and innovations developed during the 6G-INTEGRATION-3 
project that will aid in the integration and convergence between terrestrial and non-terrestrial 
infrastructures, addressing both technical challenges and practical solutions for the next generation 
of 6G mobile networks. 

First, the use of advanced artificial intelligence and machine learning algorithms, in particular 
Reinforcement Learning (RL), for the dynamic optimization of NTN optical path finding is highlighted. 
These algorithms allow modeling and solving complex routing, mobility management and network 
segmentation problems in highly variable environments, such as those presented by LEO satellite 
constellations and moving HAPS platforms. 

One of the main contributions is the proposal and implementation of efficient frame transmission 
strategies in HAPS-satellite-ground links. The concept of "withhold scheduling" is introduced, which 
allows balancing data queues between ground stations and reducing the overall system latency, 
thus overcoming traditional immediate transmission approaches and maximizing the overall network 
throughput. 

The paper also addresses the importance of distributed synchronization and Doppler effects 
management, which are fundamental in scenarios where network nodes (satellites, HAPS, UAVs) 
exhibit high-speed mobility. Specific techniques are proposed to maintain channel reliability and 
minimize transmission errors, essential for critical applications and ultra-reliable low latency 
communications (URLLC). 

In the experimental field, the design and deployment of a modular drone platform, equipped with 
edge computing (Jetson Orin), 5G router and Lidar sensors, is detailed, allowing field validation of 
the proposed algorithms and architectures. This platform facilitates realistic experimentation in NTN 
scenarios. 

The paper delves into the analysis of the requirements of advanced applications, such as augmented 
and virtual reality (AR/VR), which will be determinant in the demand for capacity and latency in 6G 
networks. Experimental results with VR/AR Meta Quest 3 devices are presented, evidencing needs 
of up to 1 Tbps for holographic applications and latencies below 2 ms for haptic feedback, together 
with extreme reliability requirements on HAPS-terrestrial links. 

As an innovative element, a converged architecture is proposed that integrates Multi-access Edge 
Computing (MEC) capabilities in the HAPS nodes, enabling distributed content caching, local 
processing of AR/VR streams and intelligent management of handovers between satellite, HAPS 
and terrestrial segments. This approach reduces latency and improves the user experience in next-
generation applications. 

Finally, the paper highlights the need for close coordination between algorithmic design, hardware 
innovation and experimental validation to address the challenges of 3D mobility, channel variability 
and spectral coexistence in NTNs. The collected contributions lay the technical foundation for the 
massive and efficient deployment of HAPS in the 6G ecosystem, positioning these platforms as an 
essential pillar of future global connectivity.  
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1. Introduction 
Non-Terrestrial Networks (NTNs) represent a pivotal evolution in modern telecommunications, 
offering the potential to connect remote regions, enhance network resilience, and enable a new 
generation of applications requiring seamless global connectivity. By integrating satellite systems, 
high-altitude platforms, and drone-based networks with terrestrial infrastructures, NTNs aim to 
overcome traditional limitations such as geographical barriers, network congestion, and scalability 
constraints. However, the realization of NTNs at scale poses several technological challenges, 
requiring innovation across multiple domains, from algorithms and hardware to application-specific 
optimizations. 

This document presents a structured exploration of these challenges, and the technological 
advancements required to address them. Each section builds upon the preceding one, creating a 
cohesive narrative that highlights the interconnected nature of NTN development. 

The journey begins in Section 2, which focuses on the fundamental issue of efficient frame 
transmission within NTNs. Unlike terrestrial networks, NTNs operate in highly dynamic environments 
characterized by longer propagation delays, higher levels of signal degradation, and intermittent 
connectivity. These factors demand specialized algorithms to optimize data transmission while 
ensuring minimal latency and maximum reliability. This section examines the complexities of data 
transmission in NTNs and introduces novel approaches to achieve efficient frame delivery, paving 
the way for robust communication in scenarios where traditional networks struggle. 

Building on the challenges outlined in Section 2, Section 3 introduces reinforcement learning (RL) 
as a promising approach to optimize routing within NTNs. Optimal routing is crucial in NTNs, where 
the network topology constantly changes due to the movement of satellites, drones, or high-altitude 
platforms. RL algorithms offer the ability to learn and adapt to these dynamic conditions, ensuring 
efficient data routing even in the face of unpredictable changes. This section not only provides an 
overview of RL concepts but also delves into the practical implications of applying RL to NTNs. It 
addresses the critical gap between simulation-based algorithm development and real-world 
deployment, highlighting the need for validation in operational environments. Additionally, it explores 
a cutting-edge application of machine learning for privacy firewalling and telemetry, illustrating how 
NTN-specific innovations can enhance network security and monitoring capabilities. 

While the theoretical foundation of RL is compelling, the practical deployment of such algorithms in 
NTNs requires robust and versatile hardware platforms. Section 4 takes a closer look at this aspect 
by presenting the design and capabilities of a research-oriented drone tailored for NTN 
environments. This drone serves as a testing bed for RL algorithms and other innovative networking 
solutions. Equipped with advanced sensors, communication modules, and computational resources, 
it facilitates the real-world validation of NTN technologies. By bridging the gap between theoretical 
research and field experimentation, this section underscores the importance of hardware innovation 
in the development lifecycle of NTNs. 

The final section, Section 5, shifts the focus toward the end-user perspective, examining the 
implications of NTNs for bandwidth-intensive and latency-sensitive applications such as virtual reality 
(VR). VR applications are increasingly seen as a benchmark for network performance due to their 
stringent requirements for ultra-low latency, high bandwidth, and consistent reliability. This section 
evaluates the bandwidth and latency demands of VR scenarios using experimental setups with 
MetaQuest3 headsets. It also explores the broader implications of integrating VR and other emerging 
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technologies into existing telecommunications networks, highlighting the adjustments needed to 
ensure a seamless and immersive user experience. 

The overarching narrative of this document connects these diverse elements into a unified vision for 
advancing NTNs. The interplay between algorithmic innovation, hardware design, and application 
evaluation is at the heart of NTN development. Efficient frame transmission algorithms lay the 
groundwork for reliable communication, while RL-based routing introduces adaptability and 
intelligence to the network. Real-world validation through specialized hardware ensures that these 
advancements are practical and scalable. Finally, a focus on cutting-edge applications like VR 
underscores the transformative potential of NTNs, serving as both a driver and a beneficiary of these 
technological advancements. 

Through this holistic exploration, we aim to illuminate the critical challenges and opportunities in the 
development of NTNs. By addressing these challenges, this document seeks to contribute to the 
realization of NTNs as a cornerstone of future global connectivity, enabling a wide array of 
applications that will shape the technological landscape for years to come. 

2. Efficient algorithms for frame transmission 

2.1 Challenges for data transmission in LEO satellites  
Frame transmission in Non-Terrestrial Networks (NTNs), particularly those involving Low Earth Orbit 
(LEO) satellites and High Altitude Platforms (HAPs), faces several significant challenges that can affect 
the overall efficiency and reliability of communication systems. In particular: 
- Latency is a critical concern, particularly for applications requiring ultra-reliable low-latency 
communications (URLLC). While LEO satellites offer the advantage of low-latency communications due 
to their proximity to Earth, traditional Geostationary Earth Orbit (GEO) satellites present significant 
delays that can adversely affect signal transmission. Additionally, scenarios involving store-and-forward 
communications can introduce further latency, as signals may need to be queued for transmission when 
satellites gain visibility to ground stations.  
- Signal instability is also a major concern and is exacerbated by the high-speed motion of satellites in 
LEO. This rapid movement can lead to pronounced Doppler effects, resulting in significant frequency 
shifts that complicate frequency offset estimation. As satellites traverse their orbits at high speeds, 
maintaining synchronization becomes increasingly difficult due to these frequency offsets, thereby 
affecting the accuracy of frame detection methods employed at the receiver end. 
- Frame size: The necessity for bursty communication, common in satellite environments, further 
complicates frame transmission. Unlike traditional long-frame structures, short-frame structures are 
often adopted to accommodate sudden communication demands. While this approach enhances 
flexibility and reduces error accumulation during transmission, it also imposes stringent requirements 
on frame detection technology, which must be capable of rapidly adapting to changing conditions in a 
dynamic communication environment. 
- Shared Media: Current wireless systems are not optimally designed to handle massive connectivity 
with numerous devices, particularly in satellite communications. The traditional random access method 
involves multiple steps, including preamble transmission, response phases, and contention resolution, 
which can be inefficient in high-demand scenarios. The necessity of close-loop signaling and extensive 
message exchanges can lead to congestion, further complicating the management of resources in 
these environment. As such, there is a pressing need to adopt more efficient access schemes that can 
streamline resource allocation and enhance spectrum efficiency. 
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- Synchronization: The complex operational environment of NTNs necessitates advancements in frame 
detection technology. Traditional methods must evolve to meet the challenges posed by high-speed 
motion, varying signal conditions, and the need for rapid adaptation to dynamic communication 
scenarios. This evolution includes employing distributed synchronization headers to enhance frequency 
offset estimation and developing innovative access methods, such as Non-Orthogonal Multiple Access 
(NOMA) schemes, to efficiently manage simultaneous transmissions from multiple users. 
Because of orbital dynamics, a LEO satellite passes over a ground station receiver in a few minutes. 
As a result, it is common in satellite networks to transmit data as quickly as possible during this brief 
window, utilizing the full available bandwidth. Consequently, much of the previous research has focused 
on enhancing the radio technology in both satellites and ground stations to maximize data transfer within 
these short contact periods. Significant advancements have been made in this area, and now even 
small CubeSats in Low Earth Orbit can achieve Gbps data links to the ground [1]. 
This approach of "fast" data transmission from satellites to ground stations can produce long queues at 
some ground stations, while other stations experience shorter queues and are underutilized. This 
imbalance occurs for two main reasons. First, ground stations are unevenly distributed geographically 
due to factors like spectrum licensing, country-specific regulations, and proximity to the poles. As a 
result, the amount of new data a satellite accumulates between its contacts with ground stations can 
vary significantly, leading to unbalanced queue lengths. The second reason is that different ground 
stations have varying backhaul bandwidths to the cloud, ranging from hundreds of Mbps to several 
Gbps. This causes significant fluctuations in queue lengths across different locations and times. As a 
result, images at stations with large queues and low bandwidth experience considerable delays. The 
issue is becoming more pronounced as additional compute resources are integrated into ground 
stations for edge-style processing, which exacerbates load imbalances due to both network and 
computational delays [2]. 
As LEO constellations and systems become more complex, there is a need to address these issues 
and provide solutions that provide predictable performance across the entire network [3]. In the following 
we describe different approaches and solutions for efficient frame transmission. 

2.2 Efficient frame transmission 
The main factors to take into account to schedule frame transmission to optimize overall network 
performance are: 

- Position of the satellites: this determines the feasibility, quality, and duration of contacts with 
ground stations. A key factor is the predictable orbital movement of each satellite, meaning the 
sequence and timing of ground station connections are known in advance. However, link quality 
can fluctuate, for example due to atmospheric conditions and may conditions scheduling [4]. For 
example, if link quality is expected to be poor, it may not be ideal to hold back large amounts of 
data for transmission. 

- Ground station contention: ground stations are relatively few compared to the large number of 
satellites. As a result, multiple satellites may compete for access to the same ground station. 
While ground stations may have several antennas, each antenna can only communicate with 
one satellite at a time, creating a one-to-one relationship. Additionally, receiving data from 
several satellites at the same time puts pressure on the outgoing link of the ground station and 
may lead to long queues. 

- Traffic Pattern: queue sizes at ground stations change over time. For example, if several 
satellites decide to delay transmitting data to a particular ground station, that station may 
become idle, while later ground stations face long queues. 

The problem can be formulated in terms of a Time Expanded Network (TEN) [5], i.e. a network whose 
topologies and node change over time, in our case due to the movement of satellites [6]. Once formally 
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defined, different optimization functions can be used to achieve the desired performance objectives 
which can include: 

- Maximize the end-to-end throughput for the data transfer process from the satellites to the cloud. 
- Ensure a given latency for data transfers.  
- Provide trade-offs between throughput and latency for all satellites or for a subset of them. 

Simulation results show that the traditional scheme of transmitting greedily to the ground station as 
much data as possible does not lead to the best performance in many scenarios. Instead other 
strategies in which satellites defer the transmission of some data to another ground station at a later 
time result in better performance. This type of strategy is denoted as withhold scheduling in [2] and 
shown to balance queue sizes across ground stations, resulting in higher throughput and lower latency 
for satellite data transfers to the cloud. The deferral of transmissions can be triggered by a number of 
factors: 

- Better link quality with another ground station. 
- Faster backhaul link with another ground station. 
- Less loaded ground station. 

The simulation studies show the potential of this transmission withholding strategies and the next 
challenge is to implement the optimization in real-time and run it on a satellite constellation. This requires 
not only real-time implementations of the TEN optimizers but also the collection of the network data in 
real-time which is challenging, for example in Internet of Things applications [7].  
 

3. Reinforcement Learning for optimal routing 

3.1. Overview of reinforcement learning 
Reinforcement Learning (RL) is a subset of machine learning where an agent learns to make 
sequential decisions by interacting with an environment to maximize a cumulative reward. Unlike 
supervised learning, which uses labeled data, RL relies on feedback in the form of rewards or 
penalties to optimize its behavior. This interaction is modeled as a Markov Decision Process (MDP), 
defined by states, actions, transition probabilities, and rewards [8][9]. 

3.1.1. Core Components of RL: 

1. Agent: The learner or decision-maker. 
2. Environment: The system with which the agent interacts. 
3. Policy (π): A strategy mapping states to actions. 
4. Value Function: Measures the expected cumulative reward from a given state or state-

action pair. 
5. Reward Signal: Feedback indicating the immediate gain of an action. 

RL has evolved from classical algorithms like Q-Learning and SARSA to more advanced techniques, 
including Deep Reinforcement Learning (DRL). DRL leverages neural networks to handle high-
dimensional state spaces, enabling its application in complex domains like autonomous systems and 
games (e.g., AlphaGo) [8][9][11]. 
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3.1.2. Categories of RL: 

• Model-Free RL: Learns directly from experience without modeling the environment (e.g., Q-
Learning, Policy Gradient methods) [8][10]. 

• Model-Based RL: Constructs a model of the environment for planning and decision-making 
[11]. 

• On-Policy vs. Off-Policy: 
o On-Policy algorithms improve policies based on the actions taken by the current 

policy. 
o Off-Policy algorithms evaluate or improve a policy different from the one used to 

generate data. 

3.1.3. Challenges and Mechanisms: 

Reinforcement Learning (RL) has achieved remarkable success in diverse applications; however, 
several significant challenges remain. These challenges stem from the inherent complexity of 
dynamic environments, the high computational demands of RL algorithms, and limitations in 
scalability and generalization. Below, we explore these challenges in detail along with the techniques 
employed to address them. 

3.1.4. Exploration-Exploitation Trade-off 

One of the fundamental challenges in RL is balancing exploration (trying new actions to discover 
better rewards) and exploitation (leveraging known actions to maximize immediate rewards). This 
trade-off is particularly difficult in large or continuous action spaces where exhaustive exploration is 
impractical. The main techniques employ to deal with this trade-off are: 

• Epsilon-Greedy Strategies: A simple heuristic where actions are mostly chosen based on 
current knowledge, but random actions are periodically taken to explore alternatives. 

• Upper Confidence Bound (UCB): A method that balances exploration and exploitation by 
assigning higher priority to actions with uncertain rewards. 

• Entropy-Based Regularization: Often used in Policy Gradient methods, this approach 
ensures the agent maintains diverse action distributions during learning [8][9]. 

3.1.5. Sparse and Delayed Rewards 

In many environments, rewards are either infrequent or significantly delayed, making it hard for an 
agent to associate specific actions with outcomes. This is a critical issue in long-horizon problems 
like robotic manipulation or routing optimization in networks. The main techniques to deal with this 
issue are: 

• Reward Shaping: Augmenting the reward signal with intermediate incentives to guide 
learning. For example, using distance to a goal as a proxy reward. 

• Hindsight Experience Replay (HER): Reframes failures as successes by rewriting the 
reward for achieved goals post hoc, often used in goal-directed tasks. 
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• Temporal Abstraction via Hierarchical RL: Breaks tasks into smaller sub-goals, enabling 
rewards at intermediate stages [9][10]. 

3.1.6. Scalability to High-Dimensional State and Action Spaces 

The curse of dimensionality affects RL when the state or action space grows exponentially, as in 
non-terrestrial networks with dynamic topologies. Classical tabular methods fail in such cases. Thus, 
several ways of dealing with this problem have been proposed: 

• Function Approximation: Using deep neural networks (as in Deep Q-Networks, DQN) to 
approximate value functions or policies. 

• Actor-Critic Frameworks: These combine policy-based and value-based methods to scale 
effectively in continuous action spaces. 

• Policy Optimization Algorithms: Techniques like Trust Region Policy Optimization (TRPO) 
and Proximal Policy Optimization (PPO) maintain stability and scalability [9][11]. 

3.1.7. Non-Stationarity in Environments 

In dynamic systems like NTNs, the environment is constantly changing due to factors like satellite 
movement or varying user demands, leading to non-stationary reward dynamics. There exist 
different ways to tackle this issue: 

• Adaptive Learning Rates: Adjust the learning process to rapidly adapt to environmental 
changes. 

• Meta-RL (Learning to Learn): Trains agents to quickly adapt to new environments by 
leveraging prior knowledge. 

• Ensemble Methods: Combine multiple policies or models to provide robust performance 
under uncertainty [9][11]. 

3.1.8. Multi-Agent Coordination 

In many applications, including NTNs, multiple agents must work collaboratively, which introduces 
challenges in credit assignment, competition, and communication. The way in which this is handled, 
is usually by employing one the following approaches: 

• Centralized Training with Decentralized Execution (CTDE): Agents are trained with 
shared information but operate independently during deployment. 

• Multi-Agent Reinforcement Learning (MARL): Incorporates mechanisms for cooperation 
and competition, such as sharing global rewards or using game-theoretic approaches. 

• Graph Neural Networks (GNNs): Model interactions between agents in structured 
environments like networks or graphs [9][10]. 
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3.1.9. Sample Inefficiency 

RL algorithms often require millions of interactions with the environment to converge to optimal 
policies, which is computationally prohibitive in complex systems like NTNs. The following 
techniques are typically used to address this: 

• Experience Replay: Stores and reuses past experiences to improve sample efficiency, as 
in DQN. 

• Simulation-Based Training: Pre-trains agents in simulated environments before deploying 
them in real systems. 

• Transfer Learning: Uses knowledge from related tasks or domains to speed up learning in 
the target environment [10][11]. 

3.1.10. Ethical and Safety Concerns 

In real-world applications, poorly designed reward functions can lead to unintended and harmful 
behaviors. For instance, optimizing routing in NTNs might prioritize throughput over fairness. Or 
might cause agents to congest low-priority nodes to optimize latency for specific users. Also, some 
agents can find “loopholes” in the reward function and cause undesirable behavior, such as causing 
artificial bottlenecks at some network points to maximize its reward. The main ways this is controlled 
is by: 

• Reward Engineering: Carefully designing reward structures to reflect ethical and practical 
considerations. 

• Safe Exploration Algorithms: Constrain agents to avoid unsafe actions during exploration. 
• Explainability in RL: Developing interpretable policies to ensure human oversight [11]. 

 

3.2. Optimal Routing in Non-Terrestrial Networks (NTNs) 
Optimal routing refers to the process of determining the most efficient paths for data packets to travel 
across a network to minimize delays, maximize throughput, and optimize resource utilization. In the 
context of Non-Terrestrial Networks (NTNs), which include satellites, high-altitude platforms (HAPs), 
and unmanned aerial vehicles (UAVs), routing becomes significantly more complex due to unique 
characteristics such as mobility, dynamic topology, latency, and limited bandwidth. 

This section explores the concept of optimal routing in NTNs, emphasizing the challenges, 
performance metrics, and existing frameworks to address these challenges. 

3.2.1. Characteristics of NTNs 

NTNs differ from terrestrial networks due to their dynamic and heterogeneous nature. These 
differences profoundly affect routing strategies. The mobility of satellites and UAVs leads to rapidly 
changing network structures, necessitating routing protocols that can adapt in real time. For 
example, Low Earth Orbit (LEO) satellite constellations require frequent handovers as satellites 
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move in and out of view of ground stations and other satellites [12]. Beyond the dynamic topology, 
there is the problem of latency. Signals in NTNs travel over long distances, introducing significant 
propagation delays. This is especially pronounced in Geostationary Earth Orbit (GEO) systems 
where the one-way delay can exceed 250 milliseconds [13]. Another specific characteristic of NTNs 
is the limited bandwidth and the need for sharing the radio spectrum. NTNs often operate in 
constrained frequency bands and must share resources among users, making efficient routing 
critical to avoid congestion and ensure fairness [14]. 

3.2.2. Objectives of Optimal Routing in NTNs 

The objectives of optimal routing in Non-Terrestrial Networks (NTNs) are focused on addressing the 
unique challenges posed by satellite constellations and aerial systems, particularly in relation to 
efficiency, latency, and scalability. The goal is to ensure reliable communication while minimizing 
delay and optimizing resource usage. In the context of NTNs, routing protocols must dynamically 
adjust to the changing topology and mobility of satellites and UAVs, ensuring continuous service 
even as nodes constantly move or go out of range. For instance, LEO constellations require frequent 
updates to routing paths as satellites pass over ground stations or switch from one satellite to 
another, which requires protocols that minimize disruption and avoid packet loss during handovers 
[11]. 

Moreover, reducing latency is a critical objective in NTN routing. The propagation delay between 
ground stations and orbiting satellites can significantly affect real-time communication services, 
especially for high-demand applications such as video streaming or IoT systems. In GEO systems, 
this latency can exceed 250 milliseconds, which can be unacceptable for certain applications. 
Therefore, optimizing routing to minimize this delay while ensuring robustness against interference 
from other satellites or atmospheric conditions is vital [12]. Another important aspect is maximizing 
the utilization of the available bandwidth. Given the limited frequency spectrum in NTNs, efficient 
routing must prioritize data flows to avoid congestion, manage network resources effectively, and 
guarantee fairness among users. This is especially challenging as these networks often rely on 
shared frequency bands and must accommodate varying levels of demand across multiple users 
and applications [17]. 

Thus, optimal routing in NTNs aims to achieve not only low latency and efficient resource allocation 
but also a scalable and adaptable system that can handle the dynamic nature of space-terrestrial 
networks. 

3.2.3. Challenges in Achieving Optimal Routing in NTNs 

Achieving optimal routing in Non-Terrestrial Networks (NTNs) is fraught with several unique 
challenges due to the dynamic and heterogeneous nature of these networks. One of the primary 
challenges is the dynamic topology caused by the mobility of satellites, UAVs, and other aerial 
platforms. As satellites orbit in Low Earth Orbit (LEO) or other altitudes, the network topology 
changes constantly, requiring frequent updates to routing tables. This dynamic nature complicates 
the design of routing protocols, which must be able to handle such frequent topology changes without 
incurring significant delays or packet loss. Moreover, these networks often need to handle frequent 
handovers between satellites, ground stations, and aerial systems as they pass out of range or 
transition between coverage areas. These handovers are crucial in maintaining seamless 
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communication but are resource-intensive and can lead to disruptions in connectivity if not managed 
properly [15]. 

Another challenge in NTN routing is the high latency inherent in space communications. For 
example, communication with satellites in Geostationary Earth Orbit (GEO) introduces significant 
one-way delays of over 250 milliseconds due to the vast distance between the satellite and ground 
stations. While Low Earth Orbit (LEO) constellations help reduce latency by positioning satellites 
closer to Earth, they require complex routing strategies to manage the continuous movement of the 
satellites and handovers that occur frequently. The propagation delay and the time it takes for signals 
to travel from satellites to ground stations or between satellites in the constellation create additional 
complexity in designing protocols that maintain low delay and high throughput [15]. 

Bandwidth limitations are another critical concern. Unlike terrestrial networks, NTNs must operate in 
constrained frequency bands, which are shared among various users and services. Efficient 
management of this bandwidth is essential to avoid congestion and ensure fairness in resource 
distribution. In many cases, the spectrum availability is limited, especially for high-data-rate 
applications like video streaming or large-scale data transfer, making the need for efficient routing 
protocols even more pressing. These protocols must not only find the most optimal paths but also 
manage resources in a way that prevents congestion and interference between satellite links. 

Finally, there is the need for scalability in NTN routing solutions. With the rapid growth of satellite 
constellations, there is a constant increase in the number of nodes in these networks. Scalability 
becomes a challenge as routing protocols must handle large networks while ensuring that updates 
and path calculations remain efficient and manageable. The combination of these challenges 
necessitates the development of advanced routing algorithms that can dynamically adjust to real-
time conditions, minimize delays, and optimize the use of network resources to achieve optimal 
performance across the entire NTN. 

3.2.4. Traditional Approaches to Routing in NTNs 

Traditional routing approaches in Non-Terrestrial Networks (NTNs) are primarily based on 
established techniques that have been adapted from terrestrial network routing algorithms, but these 
methods often require significant modifications to cope with the unique characteristics of NTN 
architectures. One of the foundational approaches is distance-vector routing, where each node in 
the network exchanges information with its neighbors to determine the best path to a destination. In 
satellite networks, this approach faces challenges due to the dynamic topology and the frequent 
handovers between satellites and ground stations [15]. While effective for more stable networks, this 
technique requires frequent updates, which can lead to inefficiencies in NTNs, particularly in Low 
Earth Orbit (LEO) constellations where satellites move quickly across the sky. 

Another widely used traditional routing technique is link-state routing, where each node maintains a 
map of the entire network and uses this information to determine the shortest path to each 
destination. While this method can provide more accurate and efficient routing compared to distance-
vector approaches, it also faces challenges in NTNs due to the high mobility of nodes. For example, 
in a satellite constellation, frequent changes in the connectivity between satellites and ground 
stations require constant recalculation of routing paths, which can lead to higher computational 
overhead and delays [14]. Moreover, this method requires each node to have knowledge of the entire 
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network's topology, which becomes more complex and difficult to maintain as the number of satellites 
or nodes in the network increases. 

Path-vector routing is another traditional approach that is commonly used in hybrid networks, such 
as those that combine space-based and terrestrial communication systems. This approach, while 
effective in reducing overhead compared to link-state routing, still faces similar challenges in NTNs, 
especially when dealing with inter-satellite communication. The complexity of inter-satellite links and 
the continuous reconfiguration of routes due to satellite movement can create situations where 
routing decisions are outdated by the time they are made [16]. 

Lastly, hybrid routing protocols have been proposed for NTNs, combining elements of both proactive 
and reactive routing. Proactive protocols maintain up-to-date routing tables, ensuring that nodes can 
communicate instantly when needed, while reactive protocols only compute routes when necessary. 
These hybrid protocols attempt to balance the need for fast communication with the efficiency of 
reduced updates, but their effectiveness in NTNs can be hindered by the limited bandwidth and high 
latency associated with satellite communication [17]. 

While traditional approaches have provided useful starting points, they often require further 
refinement to meet the specific challenges of NTN environments, such as dynamic topology, mobility, 
latency, and bandwidth constraints. As such, more advanced and specialized routing algorithms are 
increasingly being explored for optimal performance in NTN contexts. In this regard, Deep 
Reinforcement Learning is gaining traction as a useful alternative to allow the different nodes to 
optimize different aspects of the communication. 

3.2.5. Emerging Trends in Optimal Routing for NTNs 

Emerging trends in optimal routing for Non-Terrestrial Networks (NTNs) reflect the growing role of 
advanced technologies like deep reinforcement learning (DRL) and multi-agent systems. Traditional 
satellite routing methods, which rely on static or pre-defined paths, are being supplemented or 
replaced by more dynamic and adaptive strategies. The unique characteristics of NTNs, such as 
their time-varying topologies, the dynamic nature of Low Earth Orbit (LEO) constellations, and 
satellite mobility, make conventional approaches increasingly ineffective. In response, researchers 
are focusing on algorithms that can adjust in real-time to these changing conditions. 

One significant development is the use of Deep Reinforcement Learning (DRL) for routing 
optimization in LEO satellite networks. DRL-based routing systems can learn from past experiences 
and adjust their decisions based on real-time network states, including congestion and satellite 
positioning. This approach significantly outperforms traditional methods like Dijkstra’s algorithm, 
which does not consider the dynamic nature of satellite movements or the impact of congestion 
[18][19] 

A particular area of interest is multi-agent reinforcement learning (MARL), where each satellite in a 
network is treated as an independent agent making decisions based on its local observations. These 
agents can coordinate to optimize the routing process in a decentralized manner, reducing the need 
for centralized control, which can be costly in terms of bandwidth and processing power [21]. This 
has led to improved routing efficiency in satellite constellations, especially when compared to 
traditional routing protocols that cannot adapt quickly to changing network topologies [19]. 
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Furthermore, research has increasingly focused on hybrid models that combine DRL with other AI 
techniques, such as graph-based algorithms or metaheuristics, to improve the routing process. 
These methods aim to provide a more holistic solution by addressing not just connectivity and latency 
but also factors such as energy consumption, fairness, and load balancing [20]. As the deployment 
of 6G networks draws closer, the integration of such emerging technologies will likely play a pivotal 
role in addressing the complex challenges of NTN routing. 

The continued exploration of these innovative routing strategies underscores the shift toward more 
intelligent, adaptable systems capable of meeting the demands of modern satellite communication 
networks. As NTNs expand, especially with the rise of mega-constellations, the use of AI-driven 
approaches will be essential in ensuring efficient and scalable communication. 

3.3. Deep Reinforcement Learning for Optimal Routing in Non-
Terrestrial Networks (NTNs) 

Reinforcement Learning (RL) has emerged as a transformative tool for optimal routing in Non-
Terrestrial Networks (NTNs), particularly due to its ability to adapt to dynamic environments and 
optimize complex decision-making processes in real time. NTNs, which include satellite networks, 
unmanned aerial vehicle (UAV) systems, and other space-based communication platforms, are 
characterized by rapidly changing topologies, long propagation delays, and limited resources. These 
challenges make traditional routing protocols inadequate, paving the way for RL-based methods to 
ensure efficient data flow and connectivity. 

3.3.1. DRL for NTNs: Key Ideas 
The application of DRL to NTNs requires the definition of specific components: state, action, 
observation, and reward, all of which are tailored to the characteristics of the network. Below, we 
break down these components and provide examples of reward signals to illustrate how they are 
designed: 

- State: The state represents the current configuration of the NTN as perceived by the DRL 
agent. In NTNs, the state can include the network topology, link capacities, traffic demands, 
satellite positions, and available bandwidth. For example, in LEO satellite networks, the state 
may track the relative positions of satellites, the number of active inter-satellite links (ISLs), 
and congestion levels at each node. A more comprehensive state representation might also 
include predictions of future network conditions derived from historical data [18][20]. 

- Action: The action is the decision made by the DRL agent to change the network's behavior. 
In NTN routing, this involves selecting paths for data packets, allocating bandwidth, or 
modifying transmit power. For instance, an action might be to route a packet through a 
specific sequence of LEO satellites or adjust the number of active ISLs to balance load across 
the network [19]. 

- Observation: Observation is the partial or full view of the state that the agent perceives. In 
distributed NTN systems, observations may be localized, meaning each node (e.g., a 
satellite) has access only to its own state and immediate neighbors’ states. This constraint 
highlights the importance of designing algorithms that can operate under incomplete 
information, often addressed using partially observable DRL (POMDP frameworks) [18]. 

- Reward: The reward is the feedback signal that guides the agent towards optimal policies. 
In NTN routing, rewards are designed to align with network objectives, such as minimizing 
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end-to-end latency, maximizing throughput, or balancing energy consumption. Rewards can 
be instantaneous (reflecting performance for a single step) or cumulative (evaluating long-
term benefits). The reward design directly influences the agent's learning behavior and 
outcomes [21]. 

3.3.2. DRL for NTNs: Popular Methods 
Q-Learning and Deep Q-Learning 

Q-learning, a model-free RL algorithm, has been widely adopted for NTNs due to its simplicity and 
adaptability to discrete action spaces. Deep Q-Networks (DQNs), an extension of Q-learning, 
integrate deep learning to approximate Q-values for large state spaces, making them suitable for 
complex NTN topologies. For example, DQN has been applied to optimize routing by dynamically 
selecting links to minimize latency and improve throughput in Low Earth Orbit (LEO) satellite 
constellations [23][24]. 

Extensions of DQN, such as Double DQN and Dueling DQN, further address issues like 
overestimation and reward instability. Double DQN uses separate networks for action selection and 
evaluation, which reduces bias in Q-value estimation. Similarly, Dueling DQN splits the Q-function 
into value and advantage streams, enabling better policy evaluation [23][24]. 

Actor-Critic Approaches 

Actor-critic methods combine policy-based and value-based learning. These approaches are 
particularly effective in NTNs, where continuous decision-making is needed. The actor learns the 
policy (mapping states to actions), while the critic evaluates the policy's performance using value 
functions. Policy Gradient methods, such as Proximal Policy Optimization (PPO) and Advantage 
Actor-Critic (A2C), have demonstrated potential for NTN routing by enabling stable convergence and 
efficient use of limited network resources [23][24]. 

Graph-Based DRL 

With NTNs characterized by graph-like topologies (e.g., satellite and UAV networks), GNN-based 
DRL algorithms are gaining traction. These models encode spatial and topological information 
directly into the learning process. Graph Convolutional Networks (GCNs), when combined with DRL 
frameworks, help agents identify optimal routing paths by learning dependencies across nodes in 
NTN networks, making them particularly effective for dynamic scenarios [23]. 

Hybrid Techniques 

Hybrid methods combine supervised learning with DRL to initialize models with domain-specific 
knowledge, speeding up convergence. For instance, some studies integrate heuristic algorithms like 
shortest-path routing with DRL to provide a baseline for exploration, thereby reducing computational 
complexity while maintaining flexibility in dynamic conditions [24]. 

These methods represent a diverse toolkit for addressing NTN routing challenges, ensuring robust 
and scalable solutions under dynamic and constrained conditions. 
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3.4. Real World vs Simulation: an important trade-off 
The development of reinforcement learning (RL) algorithms for routing in Non-Terrestrial Networks 
(NTNs) heavily relies on simulations during initial stages. Simulations provide a controlled 
environment to test algorithms under various scenarios, including dynamic topologies, latency 
variations, and bandwidth constraints. They allow researchers to quickly iterate, debug, and refine 
models without the significant costs or risks associated with testing on physical hardware. However, 
despite their advantages, simulations often fall short in accurately replicating the complexities of real-
world NTN deployments. This discrepancy necessitates the eventual testing and fine-tuning of RL 
algorithms on real hardware to achieve practical success. 

3.4.1. Why Simulations Are Critical for Initial Development 

Simulations play a crucial role in providing a virtual testing ground for RL-based routing algorithms. 
They allow researchers to: 

1. Model Dynamic Conditions: Simulators can replicate rapidly changing NTN topologies, 
such as satellite or UAV movement, which would be challenging to reproduce consistently 
on physical testbeds. 

2. Experiment with Hypothetical Scenarios: By manipulating variables like link failures or 
extreme weather conditions, researchers can evaluate algorithm robustness without physical 
risks. 

3. Cost and Time Efficiency: Setting up a real NTN testbed is expensive and time-consuming. 
Simulators, in contrast, provide a scalable and low-cost alternative. 

4. Hyperparameter Tuning: RL algorithms involve tuning numerous hyperparameters (e.g., 
learning rate, discount factor). Simulations accelerate this process by offering fast feedback 
loops. 

Examples of widely used simulators include STK (Systems Tool Kit) [25] for satellite network 
dynamics and ns-3 [26] for general-purpose networking simulations. 

3.4.2. The Simulation-to-Reality Gap 

Despite their utility, simulations cannot perfectly replicate the real-world conditions that NTN routing 
algorithms must handle. The simulation-to-reality gap arises due to the following factors: 

1. Simplified Models: Simulators often use simplified propagation models, ignoring factors like 
atmospheric effects, hardware imperfections, or interference from other networks. 

2. Hardware Constraints: Simulators fail to account for the processing delays, energy 
constraints, and communication inefficiencies of actual NTN hardware, such as satellite 
transponders or UAV payloads. 

3. Unpredictable Environments: Real-world environments introduce uncertainties, such as 
weather variations or unexpected interference, that are hard to model in simulations. 

4. Policy Generalization Issues: RL algorithms trained in idealized simulation environments 
often overfit to simulated conditions, leading to suboptimal performance in real-world 
deployments. 
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For instance, an RL-based routing algorithm might achieve low latency and high throughput in a 
simulator by exploiting assumptions (e.g., perfect synchronization or uniform link quality) that do not 
hold in practice. 

3.4.3. Bridging the Gap: Combining Simulations with Real Hardware 

To overcome these challenges, a hybrid approach combining simulation and real hardware is 
essential: 

1. Simulations for Pre-Training: RL models can be pre-trained in simulations to acquire 
baseline policies. This approach reduces the time and cost of training directly on hardware. 

2. Transfer Learning: Knowledge gained from simulations can be adapted to real-world 
conditions using transfer learning techniques, enabling algorithms to fine-tune their policies 
based on hardware-specific data. 

3. Hardware-in-the-Loop Testing: Integrating hardware components into simulations provides 
a more realistic testing environment. For instance, a satellite communication module can be 
tested in a simulated LEO constellation. 

4. Iterative Refinement: Alternating between simulation and real-world testing allows 
researchers to iteratively improve algorithm performance while minimizing risks. 

3.4.4. The Necessity of Real Hardware for Success 

Real hardware testing is mandatory to ensure RL algorithms meet performance expectations in live 
NTN deployments. It validates the algorithm's ability to: 

1. Handle Hardware Limitations: Real hardware tests expose computational, energy, and 
storage constraints that simulators overlook. 

2. Operate Under Realistic Conditions: Testing on physical platforms reveals unforeseen 
environmental effects and interactions with other systems. 

3. Achieve Regulatory Compliance: Simulated results cannot guarantee adherence to 
regulatory requirements, such as spectrum usage or power limits, which must be verified on 
actual hardware. 

For example, companies like SpaceX and OneWeb have emphasized real-world testing to validate 
routing algorithms in their LEO satellite constellations, ensuring robust performance under practical 
operating conditions. 

3.4.5. A Unified Reward Function for Realistic Applications 

A promising approach is the use of composite reward functions that combine simulation-derived 
metrics with hardware-specific constraints. For instance, an RL algorithm could optimize a reward 
function that is a weighted sum of: 

• Latency minimization (simulation-driven), 
• Power efficiency (hardware-driven), 
• Throughput maximization (hybrid), 
• Packet delivery ratio (real-world testing). 
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This hybrid reward structure ensures the algorithm's objectives align with both theoretical and 
practical requirements. 

3.5. ML implementation code for privacy firewalling and 
telemetry applications 

3.5.1. Introduction 
Path optimization for traffic flows is a method available to enhance the Quality of Experience (QoE) 
perceived by users. Network automation facilitates this goal by monitoring and collecting telemetry 
information and network states for both optical and packet-based data. Advanced artificial intelligence, 
machine learning, or other intelligent algorithms are then applied to evaluate network performance. 
Additionally, privacy and firewalling mechanisms are crucial for safeguarding sensitive data as it 
traverses the network. Implementing robust firewall rules and encryption standards ensures data 
privacy, while intelligent filtering can adapt to evolving threats. Telemetry applications play a key role in 
this process by continuously gathering real-time data from network devices, enabling rapid identification 
of potential security breaches or performance issues. 
Subsequently, decisions are made, and actions are taken over the network to prevent or correct 
possible performance issues that affect perceived QoE. This process is commonly referred to as closed-
loop automation. Network automation is supported by various processes, including the implementation 
of Software Defined Networking (SDN), aimed at moving towards a zero-touch network and service 
management (ZSM) approach [45]. While having valid and up-to-date information is important, choosing 
the appropriate intelligent model to detect and correct performance problems allows for making the best 
decisions to optimize network operation. 
In this section of the document, we focus on the second stage of zero-touch networking: optimal path 
decision for privacy firewalling based on both optical and packet-based telemetry information, using the 
well-known Reinforcement Learning (RL) methodology, which enables optimal network configurations 
by allowing the control plane to learn from its interactions with the network and make decisions without 
human intervention. In the past, RL has been proposed to enable ZTN by providing the network with 
the ability to learn from its own experience and make decisions without human input [46]. 
We provide a methodology for generating rewards in an RL environment, where such rewards are 
based on both optical telemetry information (i.e., pre-FEC BER) and packet routing measurements (i.e., 
latency and queue occupation). Open-source code is also provided for the interested reader willing to 
replicate the experiments and incorporate new features into the algorithm [47]. 

3.5.2. Background and Methodology 
In general, Reinforcement Learning (RL) is a type of AI/ML strategy in which an agent learns to behave 
in an environment by trial and error, that is, by making decisions and receiving positive rewards (or 
penalties as negative rewards). The agent is rewarded for taking actions that lead to desired outcomes 
and penalized when undesired outcomes occur. Over time, the agent learns to take the best actions in 
each situation that maximize its rewards (or minimize penalties) [7]. RL is effective for a variety of tasks 
in optical networks, including resource allocation (wavelengths and bandwidth), traffic engineering of 
flows to minimize congestion, and resiliency against fault management [48][50]. 
The formulation of RL problems requires defining: 

• A set of states S, which are representations of the environment at a given point in time. 

• A set of Actions A that can be taken by the agent at a given state. 
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• Rewards, which are feedback signals that the agent receives from the environment after taking 
an action in a given state. Rewards can be positive or negative. 

• The policy π, which maps states to actions. 
The goal of reinforcement learning is to find a policy that maximizes the agent’s expected discounted 
return in the long term. The agent can do this by trial and error. It tries different actions at different states 
and observes the received rewards. Over time, the agent learns to take those actions that lead to higher 
expected discounted returns. There are many libraries with functions for different RL algorithms already 
coded, both in R and Python frameworks [50]. Examples, for the open-source programming language 
R, include contextual, ReinforcementLearning, and MDPtoolbox. 
In this proposal, we used the igraph library for building network topologies and an implementation of the 
Q-learning algorithm for finding the optimal routing policy in a packet-optical network where a Path 
Computation Element (PCE) decides the best route selection for every source-destination pair, using 
both optical metrics (pre-FEC bit error rate) and packet latency measurements (including propagation 
delay and link load). The code is publicly available on GitHub for further developments by the research 
community [46]. 
The Q-learning algorithm, a form of model-free reinforcement learning, updates its value function based 
on an equation that considers the immediate reward received for an action, plus the maximum future 
rewards. The Q-value of a state-action pair (s, a) is updated as follows: 

 
Where: 

• Q(s, a) denotes the current estimate of the value of action a in state s. 

• α is the learning rate, determining the impact of new information on the existing Q-value. 

• R(s, a) is the immediate reward received after taking action a in state s. 

• γ is the discount factor, which balances the importance of immediate and future rewards. 

• max Q(s′, a′) represents the maximum predicted reward achievable in the next state s′, 
considering all possible actions a′. 

The next section shows the applicability of code [47] in a few network scenarios. 

3.5.3. Simulation scenario and RL-Based Solution 
Example on a small network topology 

Let us consider the network topology of Figure 1. 8-node topology exampleFigure 1, which comprises 
8 nodes and 9 links. We assume that all nodes report telemetry measurements regularly to the control 
plane, in which our Reinforcement Learning algorithm is running to decide the best routing strategies 
between nodes. In particular, each node reports: measured pre-FEC bit error rate (BER) and link load, 
denoted as BERᵢ and ρᵢ for the i-th link. This information, together with the link distance dᵢ in kilometers 
will be used by the RL algorithm to create negative rewards (penalties), as it follows: 

• Propagation delay adds a penalty of dᵢ × 5 μs/km, that is, the classical 5 μs signal propagation 
latency per kilometer of silica fiber. 

• Traversing a given link also adds a latency penalty of μs · 1 / (1 − ρᵢ), which is the average 
transmission and queuing delay of a 1250-byte packet transmitted over a 10 Gb/s link with load 
ρᵢ (for a classical M/M/1 queue). 
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• Monitored Pre-FEC BER adds a penalty of 1000 μs if the BER value of that link is 10⁻⁴ or 
above; 50 μs if the link’s BER is in the range between 10⁻⁵ < BERᵢ < 10⁻⁴; 0 μs penalty 
otherwise. 

As shown, traversing each link adds both packet-based penalty, propagation-delay penalty, and optical 
pre-FEC BER-related penalty to either encourage or discourage links in a path. This set of rules is 
crafted as Reward matrices for taking action a in state s (i.e., R(s, a) state-action pair), and inputs the 
Q-learning algorithm. Finally, node connectivity is also included as a bi-dimensional Matrix P(s, s′), 
which contains the probability of jumping from state (or node) s to s′. 
Table 1 shows the optimal routing policy decided by our RL algorithm for the 8-node topology of Figure 
1. The policy finds the best next hop and primary path from source to destination, taking into account 
the rewards for a given pre-FEC BER, propagation delay, and link load. In the example of Figure 1, all 
links operate with good quality optical links, i.e., pre-FER under 10⁻⁵, hence only propagation delay and 
link load contribute to finding the best primary end-to-end path. However, if the optical quality of a link 
degrades, then the RL algorithm finds an alternative or secondary route. This is the situation observed 
in Table 1 ("secondary" rows) when links 3-4 and 7-8 experience degraded pre-FEC BER. As shown, 
the RL algorithm finds new routes that avoid the use of such low-quality links (marked in bold font). 
Extended example on a large topology: Tokyo MAN 

Figure 2. tokyo topology exampleFigure 2 shows the 23-node MAN topology for Tokyo 53 for testing 
our algorithm. In this detailed examination, given the extensive scale and intricate nature of the network 
topology, our analysis will be concentrated on a select number of routing paths rather than the entire 
network. Key routes, including but not limited to the journey from Router 1 to Router 22, will be 
scrutinized. The optimal paths for these specific routes under normal conditions (primary) are depicted 
in Table 2, which also includes secondary routes after degradation of links 1-6, 1-4, and 10-11. 
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FIGURE 1. 8-NODE TOPOLOGY EXAMPLE 

 
TABLE 1. OPTIMAL PATH (POLICY) SELECTION UNDER NORMAL CONDITIONS (LOW PRE-FEC BER 
VALUES) ALONG WITH SECONDARY ROUTES AFTER DEGRADATION OF LINKS 3-4 AND 7-8 
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FIGURE 2. TOKYO TOPOLOGY EXAMPLE 

 
TABLE 2. OPTIMAL POLICY: PRIMARY (IN NORMAL OPERATION) AND SECONDARY (AFTER 

DEGRADATION OF LINKS 1-6, 1-4, AND 10-11 FOR THE TOKYO TOPOLOGY 

 

4. Deployment of a Drone for NTNs Experimentation 

4.1. Introduction 
The Development of new communication systems for Non-Terrestrial Networks (NTNs) require a great 
deal of experimentation. Par of these experiments run over simulation software. But there is a need to 
test in the real world those algorithms to check whether the simulation results also apply when dealing 
with the full complexity of the final real-world scenario. For this reason, in this section of the document, 
we provide a comprehensive guide for building a small drone for testing and evaluating connectivity in 
the context of NTNs. There are other works in the literature aimed at a similar objective 
[27][28][29][30][31].  
NTNs have various applications such as providing broadband Internet in underserved areas, enabling 
maritime and aviation communications, supporting emergency response and disaster relief efforts,  
facilitating Internet of Things (IoT) connectivity, and serving as backhaul for terrestrial networks 
[28][32][33].  
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For example, about 20% of US population lives in rural areas, which account for about 97% of the total 
land [34]. This number grows to 28% in Europe, and about 40% worldwide. In many cases, fiber 
deployment does not reach rural areas (at least the last mile), since this results very expensive for 
network operators, hard to justify in terms of Average Revenue per User (ARPU). Indeed, it is estimated 
that every single meter of fiber connectivity costs approximately $100 USD. The largest share of this 
cost includes digging, trenching and the civil works in general [37]. NTNs can help provide broadband 
connectivity to such isolated areas where fiber deployment is not feasible [35][33][36]. 
Concerning satellites, another important piece of the NTN ecosystem, the research community has 
witnessed a race toward deploying different satellite constellations to provide connectivity globally, with 
more than 50,000 satellites estimated to be launched within 10 years [38]. Thanks to the cost reduction 
in launching Low-Earth Orbit (LEO) satellites [39], four major companies are already deploying LEO 
satellite mega-constellations, namely Telesat, Tesla’s Starlink, OneWeb and Amazon Kuiper [34]. 
However, there are a number of challenges related with the integration of satellites into the 5G 
ecosystem, mainly due to latency and doppler effects, as analyzed in [40][41][42]. A detailed survey on 
this matter is exhaustively studied in [43]. Hence, satellites are expected to be also complemented with 
LAPS and UAVs like drones, which are inexpensive, easy to deploy and operate, and can be landed 
for operations maintenance and take off as quickly as needed and as many times as necessary. 
In the upcoming sections, we provide a short guide for building a medium-sized drone for 5G 
connectivity experiments and use cases. This includes the component selection and assembly 
procedures for building a drone, along with open-source software libraries needed to have it up and 
running.  
This drone is designed to weigh 6.5 Kg and cost less than 4,000 USD (at the time of writing, sept 2024), 
having an autonomy of 40 minutes. Such features open up a wide array of applications across various 
fields: 

• Advanced Surveillance and Reconnaissance: The combination of 5G connectivity, 360-degree 
camera, and GPS allows for real-time, high-resolution surveillance with a panoramic view. This 
makes it ideal for law enforcement, search and rescue operations, or monitoring large-scale 
events. 

• AI-Powered Environmental Monitoring: Utilizing the Jetson Orin’s processing power and 
onboard AI models, the drone can perform real-time analysis of environmental data. It could be 
used to monitor wildlife populations, track deforestation, or assess the impact of natural 
disasters. 

• Smart Agriculture: The drone’s capabilities make it an excellent tool for precision agriculture and 
Internet of Things (IoT) applications. It can analyze crop health, detect pests or diseases, and 
even assist in targeted application of fertilizers or pesticides. 

• Autonomous Inspection of Infrastructure: Thanks to computer vision and image processing 
state-of-the-art software, drones can now perform detailed inspections of bridges, power lines, 
wind turbines, or other large structures, identifying potential issues without human intervention. 

• Enhanced Film making and Photography: The 360-degree camera and stable flight 
characteristics make this drone an exceptional tool for cinematographers and photographers, 
offering unique perspectives and immersive footage. 

• Edge Computing for Scientific Research: The onboard GPU and ability to run deep learning 
models allow for complex data processing in the field, providing valuable data for scientific 
expeditions in remote areas, enabling real-time decision making and analysis of collected data. 

• Emergency Response and Disaster Management: The drone’s 5G connectivity and advanced 
imaging can provide critical real-time information to first responders and disaster management 
teams, helping to coordinate relief efforts more effectively. 
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• Interactive Art Installations: The drone’s combination of visual capabilities and processing power 
opens up possibilities for creating dynamic, AI-driven art installations or performances. 

These applications demonstrate how the integration of advanced hardware and AI capabilities can 
transform a drone from a simple flying camera into a versatile, intelligent platform capable of tackling 
complex tasks across numerous industries. 

4.2. Hardware Design 

4.2.1. Initial Design and requirements 
This guide begins by emphasizing the importance of clarifying the primary objective of the drone. 
Whether intended for filming purposes or prioritizing endurance, this initial consideration serves as the 
cornerstone for developing a professional-grade UAV. The following list outlines the functional 
requirements the drone should fulfill, such as emergency fire detection, Large-Language Model support, 
or video recording. Other special technical specifications and requirements before starting the design 
process are: 

• Aerodynamics and propulsion efficiency 
• Weight distribution and balance 
• Flight stability and control 
• Power management and battery life 
• Payload capacity 
• Environmental durability 

Our drone is designed to have about 45 minutes of autonomy, weigh 6.5 kilograms, and require 600 
Watts of power. Figure 3 shows the final assembled drone along with the individual components on top 
and bottom. Also, Table 3 provides a summary list of individual components, and the next section briefly 
overviews each hardware component in detail. 
Before starting, it is important to have: 

• Welding equipment 
• A 3D printer 

Next, we outline the basic building components used in the drone of Figure 3, namely frame and body, 
motors and propellers, flight controller, battery, sensors (e.g., GPS, accelerometers), and 
camera/payload systems, among others. 
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FIGURE 3. DRONE FINALLY ASSEMBLED (TOP); COMPONENTS AND TOP VIEW (BOTTOM LEFT), AND 
COMPONENTS AND BOTTOM VIEW (BOTTOM RIGHT) 
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TABLE 3. INDIVIDUAL COMPONENTS AND APPROXIMATE COST (DECEMBER 2024) 

 
Platform 

Selecting the appropriate platform is a pivotal decision in the drone-building process, with the frame 
being the initial consideration. Given the goal of constructing a long-endurance drone capable of 
carrying substantial weight, we decided to opt for a quadcopter configuration. This choice is driven by 
the fact that quadcopters can accommodate larger propellers compared to hexacopters, thereby 
enhancing overall efficiency. While hexacopters excel in speed and stability, quadcopters offer superior 
endurance and efficiency, aligning more closely with the desired characteristics for this particular 
project's functional requirements. 
For this, we have chosen the 17-inch propeller Tarot XS690. 
Motors 

Selecting the right motors is crucial for our quadcopter’s performance and is nearly as important as 
selecting the frame. After extensive research and evaluation, we have chosen to implement motors 
from T-motor, an industry leader renowned for its high-quality multirotor propulsion systems. From T-
motor’s lineup, the T-motor U7 V2 490KV has emerged as our optimal choice, since it offers an 
exceptional balance of power, efficiency, and versatility. Key features include: 

1. Versatile power handling: Capable of efficiently driving 17-inch propellers using either 4S 
(14.8V) or 6S (22.2V) LiPo batteries. 

2. Adaptive performance: The 490KV rating allows for a wide operational range, balancing thrust 
output with power consumption. 

3. Robust construction: Featuring high-quality materials and precise manufacturing for durability 
and reliability. 

4. Thermal efficiency: Advanced design for optimal heat dissipation, ensuring consistent 
performance during extended flight times. 

The U7 V2 490KV’s adaptability is particularly advantageous for our project, as it allows us to fine-tune 
our power system based on specific mission requirements. We can optimize for either extended flight 
time using 4S batteries or maximize thrust with 6S configurations, without needing to change motors. 
Electronic Speed Controller 

Now that we have selected our motors, the next critical component is choosing a suitable Electronic 
Speed Controller (ESC). The ESC is vital as it regulates power delivery from the battery to the motors, 
ensuring smooth and precise control. Continuing with our T-motor ecosystem, we have selected the T-
motor Flame 70A LV ESC. Key features of the T-motor Flame 70A LV ESC include: 

• Current Rating: 70A continuous current, allowing for high-power handling capability. 
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• Low Voltage (LV) Compatibility: Specifically designed for use with lower voltage setups, 
including 4S LiPo batteries (14.8V nominal). 

• Voltage Range: Supports 3S to 6S LiPo batteries (11.1V to 25.2V), providing flexibility in power 
system design. 

• Heat dissipation: Optimized for heat dissipation and durability. 
It is worth noting that we have selected the LV (Low Voltage) variant of the Flame ESC series. This 
choice is deliberate and essential for our build, as we intend to use 4S (14.8V) LiPo batteries. The LV 
models are optimized for these lower voltage ranges, ensuring efficient operation and proper motor 
control. 
In contrast, the HV (High Voltage) models in the Flame series are designed for higher voltage systems, 
typically supporting 6S (22.2V) batteries and above. Using an HV ESC with our 4S setup would not 
work as there is not enough voltage supplied to power the components. By pairing the T-motor U7 V2 
490KV motors with the Flame 70A LV ESCs, we create a well-matched and efficient power system. 
This ESC selection complements our motor choice, resulting in a reliable and versatile power system 
for our quadcopter drone. 
Battery 

We intend to incorporate a Jetson Orin as the primary processing unit, weighing 750 g, alongside a 
router weighing 600 g, resulting in a combined weight of 1,350 g. Due to the high energy consumption 
of these components, it is crucial to include a substantial battery to offset power demands and sustain 
flight duration. 
Considering the motors, ESC, frame, and other components, the total weight of the drone is 6.4 kg. 
Ideally, the drone should hover at half its maximum power. Motors operating on a 4S configuration 
generate 1.1 kg of thrust at 50% throttle, necessitating a 900 g battery for the entire system. 
A 900 g battery is insufficient for this UAV application. Therefore, adjustments must be made to 
accommodate a larger battery. Options include reducing the drone’s weight or enhancing its power 
output (utilizing a 6S configuration). However, to maintain build simplicity, we opt to operate at 60% 
throttle with a larger battery, albeit sacrificing some flight performance. Given the intended use of the 
drone for slow movements and hover predominantly, this compromise is deemed acceptable. 
To address this, we will utilize a 4S 22Ah battery, weighing 2.5 kg, resulting in a total weight of 6.5 kg. 
Consequently, each motor will be required to pull 1.5 kg during hover. 
Power Distribution Board 

For our high-performance drone, we have chosen the Holybro PM07 Power Distribution Board (PDB). 
This PDB is ideal for our current 4S setup and is future proofed for potential 6S upgrades. Notable 
features are: 

1. Voltage support up to 14S LiPo 
2. High current handling: 90A continuous, 140A peak 
3. Integrated voltage and current sensing (up to 140A) 
4. Built-in LC filter for clean power output 
5. Multiple output options: 

o 8 pairs of ESC solder pads 
o 5V 3A FC output 

6. Compact design: 68 × 50 × 10 mm 
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The PM07 meets our requirements for battery sensing without a separate sensor. This PDB ensures 
our drone’s power system is robust, flexible, and capable of handling both current needs and future 
upgrades, making it an excellent fit for our build. 
Power for Additional Electronics 

Powering the electronic components of our drone, particularly the Jetson Orin and router, requires 
careful consideration to ensure stable and clean power delivery. 
For the Jetson Orin, our most valuable and power-hungry component, we have selected the Hobbywing 
UBEC 25A. This choice may seem excessive, as the Jetson Orin typically requires around 10V and 3A. 
However, our decision is rooted in future-proofing and expandability. The Hobbywing UBEC 25A offers: 

1. High current capacity: 25A continuous output 
2. Adjustable voltage: 5V/6V/7.4V/8.4V/9V/10V 
3. Wide input voltage range: 7V to 26V 
4. Built-in safety features: Over-current, over-temperature, and short-circuit protection 

This robust UBEC ensures clean, stable power to the Jetson Orin, crucial for its optimal performance 
and longevity. It also provides headroom for potential future upgrades or additional components. 
For the router, which has different voltage requirements, we have opted for a standard BEC (Battery 
Elimination Circuit). This more modest BEC is sufficient for the router’s power needs, balancing cost-
effectiveness with reliable performance. 
By using separate power regulation systems for these key components, we ensure each receives the 
appropriate, clean power supply, enhancing the overall reliability and performance of our drone’s 
electronic systems. 
Flight Controller 

The flight controller is the central nervous system of our drone, responsible for processing sensor data, 
executing flight algorithms, and managing overall drone behavior. After careful consideration of several 
options including the Cube Orange, CUAV V5, and others, we have selected the Pixhawk 6C for our 
build. 
Key features of the Pixhawk 6C include: 

1. Powerful STM32H7 processor (480 MHz, 2 MB Flash, 1 MB RAM) 
2. Integrated vibration isolation 
3. Multiple connectivity options: USB-C, CAN, UART, I2C, SPI 
4. Dedicated safety switch and buzzer ports 
5. Analog battery sensing input compatible with our PM07 PDB 

The Pixhawk 6C offers an excellent balance of performance and cost-effectiveness. Its analog battery 
sensing input is particularly valuable, allowing seamless integration with our chosen PM07 Power 
Distribution Board. 
For the flight control firmware, we have chosen ArduPilot. This open-source platform supports various 
drone configurations, multiple sensors, and peripherals and is fully compatible with the most popular 
ground control stations. ArduPilot’s ongoing development and broad capabilities make it an ideal choice 
for our project, providing a robust and flexible foundation for our drone’s flight control system. Its open-
source nature also allows for customization if needed in future iterations of our build. 
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Transmitter and Receiver 

For our drone’s remote control system, we have selected the Radiomaster TX16S Max, widely 
recognized as the industry standard in RC controllers. This choice ensures we have a reliable, feature-
rich interface for piloting our drone. The TX16S Max boasts a high-resolution color display for clear 
telemetry data and precise hall effect gimbals for accurate control inputs. Its customizable switches and 
buttons allow for versatile flight mode selection, while the EdgeTX firmware offers extensive 
customization options. The controller’s multi-protocol support enables compatibility with various 
receivers, and an SD card slot facilitates easy firmware updates and model storage. 
To enhance the capabilities of our control system, we have paired the TX16S Max with the TXMOD V2 
module, incorporating the RFD868X system. This combination significantly extends our control range 
by operating on the 868MHz band, offering superior long-range performance compared to traditional 
2.4GHz systems. The integrated telemetry feature provides real-time flight data transmission back to 
the controller, including crucial information like battery voltage, GPS coordinates, and altitude. 
The RFD868X system employs frequency-hopping spread spectrum (FHSS) technology, ensuring a 
stable connection even in noisy RF environments. This robust link is crucial for maintaining control and 
data integrity during flight. Furthermore, the bidirectional communication capability allows for in-flight 
parameter adjustments and mission planning updates, adding a layer of flexibility to our drone 
operations. 
By combining the Radiomaster TX16S Max with the TXMOD V2 and RFD868X, we have created a 
comprehensive control and telemetry solution in a single package. This setup offers the reliability, range, 
and flexibility required for our advanced drone application, ensuring we can maintain precise control 
and receive crucial flight data even in challenging conditions or at extended distances. 
Final Additional Components 

Lastly, before starting the assembly, a few additional parts are needed: 
• 3.5mm bullet connector 
• 4mm heatshrink 
• 20 AWG wire 
• 14 AWG wire 
• JR style connectors 
• JST GH 6 pin and 5 pin connectors 
• 10 AWG wire (optional) 

4.2.2. A Guide for Assembling the Drone 
Step 1: The PDB 

The first step to start with is the PDB: PM07 Power module (see Figure 4, top). Our drone’s power 
distribution system is designed with both current needs and future expandability in mind. The heart of 
this system is the Power Distribution Board (PDB), which will manage seven distinct battery outputs. 
Four of these outputs are dedicated to the Electronic Speed Controllers (ESCs), which regulate power 
to our drone’s motors. These connections are critical for flight performance and require robust wiring. 
We are using 14 AWG (American Wire Gauge) wire for these connections, which offers low resistance 
and can handle the high current draw of our motors. Each wire will be terminated with a 3.5mm female 
bullet connector, allowing for secure yet easily detachable connections to the ESCs. 
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Another 14 AWG wire will power the Hobbywing BEC (Battery Elimination Circuit), which provides 
regulated power to our Jetson Orin. This thick gauge ensures minimal voltage drop, which is crucial for 
the stable operation of our main computing unit. 
For our retractable landing gear and an additional expandability port, we are using 20 AWG wire. This 
gauge is sufficient for these lower-current applications. These wires will be fitted with JR-style 
connectors, standard in RC applications, ensuring compatibility with a wide range of components. 
The physical layout of these connections on the PDB is crucial for weight distribution and ease of 
maintenance. The four ESC wires will be soldered to the B+ (positive) and GND (ground) pads at each 
corner of the PDB. The placement of the BEC wire should be chosen based on the physical layout of 
components in the drone, minimizing wire length where possible. 
Lastly, we’re addressing a potential frame clearance issue by relocating the PDB’s capacitor. We will 
carefully remove it and extend its leads, allowing us to reposition it without compromising its crucial 
function of smoothing voltage fluctuations. 
This comprehensive power distribution setup provides a solid foundation for our drone, ensuring reliable 
power delivery to all components while maintaining flexibility for future modifications or additions. By the 
end of this process, the PDB setup should resemble Figure 4 (bottom). 
It is important to note that you might consider replacing these bullet connectors with XT60s if you are 
concerned about plugging peripherals in with the wrong polarity. However, since we don’t have a lot of 
space, we have opted for this option, being very careful about the polarity of the components. 
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FIGURE 4. STEP 1 PDB DIAGRAM (TOP); PDB WITH SOLDERED CONNECTORS (BOTTOM) 
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Step 2: The Frame 

Transitioning to the frame and motors, our initial task is to assemble the frame (Figure 5, left) according 
to the provided image, omitting the assembly of the arms or the top plate. Although no specific 
instructions are provided, the assembly process is straightforward. 
Before assembling the frame, we need a 3D printer for certain parts. Specifically, the landing gear T-
junction on this frame is notably flimsy, prompting the creation of a more durable and reliable 
replacement requiring 4 M3 bolts and nuts for assembly (see Figure 5, middle and right). 

 
FIGURE 5. STEP 2. TAROT FRAME (LEFT); PRINTED PART LANDING GEAR (MIDDLE); LANDING GEAR 
(RIGHT) 

Step 3: Motors 

Moving forward to the motors, we need to affix each motor onto its motor mount and subsequently onto 
the arms. Given the size of these motors and the motor mounts, we must incorporate four washers with 
each screw to ensure clearance of the motor mount bolts, as depicted in Figure 6 (left). 
Next, we weld 3.5mm male bullet connectors to the ends of the cables, as demonstrated in Figure 6 
(right). These cables are then folded inside the arms and drawn out from the other end. 
With these preparations completed, we can now proceed to mount the arms onto the frame using the 
bottom screws. Special care needs to be taken as the frame is now very fragile, since it does not have 
the strength of the top plate. 
 

 
FIGURE 6. STEP 3. DETAIL OF THE MOTOR MOUNTING SOLUTION (LEFT); MOTOR CONNECTORS 

(RIGHT) 
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Step 4: Preparation of the ESC 

Next, we need to prepare the ESCs to be mounted onto the frame. Since these ESCs already come 
with female bullet connectors welded to the outputs, we only need to weld bullet connectors to the + 
and – cables of the ESCs and the Hobbywing BEC (or XT60s for added safety) as illustrated in Figure 
7. 

 
FIGURE 7. STEP 4. ESC CONNECTORS 

Step 5: Other Cables 

Now we need to make a cable that can connect to the power port of the PDB that we previously created 
(see Figure 8, left). We also need a servo cable to connect the signal of the FC to the box, as shown 
on the left. Additionally, we need to make a cable to establish the connection between the Pixhawk 6C 
and the RFD receiver, such as the one in Figure 8, right. 

 
FIGURE 8. STEP 5. LANDING GEAR ELECTRONICS (LEFT); RFD CABLE (RIGHT) 

Step 6: Step-by-step Component Placement 

The selected approach optimizes frame utilization through strategic component placement. The flight 
controller (FC) is centrally mounted, as illustrated in Figure 9 (perspective 1), with full component 
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integration pending. FC attachment utilizes four Velcro squares, providing vibration dampening and 
positional stability. Precise central positioning is critical, avoiding any contact with the arms. 
Careful cable management is implemented for the FMU port, I/O PWM out, and power cables, routing 
them neatly beneath the FC. 
For the next step, the drone is inverted to facilitate the installation of the Electronic Speed Controllers 
(ESCs) on the underside of the bottom plate, along with the mounting of the landing gear electronic box. 
The ESCs are secured using a combination of zip ties and double-sided adhesive. The diameter of the 
zip ties is chosen carefully to ensure that the arms retain full rotational freedom. The resultant 
configuration, illustrating this arrangement, is depicted in Figure 9 (perspective 2). 
PDB installation follows, positioned between the bottom and battery plates. A custom 3D-printed mount, 
as shown in Figure 10 (left), provides electrical isolation. High-strength double-sided adhesive secures 
the case to the battery plate (Figure 10, right). 
ESC power cables (black and yellow) are connected to the PDB’s FMU/OUT port and the landing gear 
power cable. ESC placement is finalized, ensuring power cable accessibility. The configuration should 
mirror Figure 11 (left). 
The plate is affixed to the frame’s provided plastic components, with the PDB-containing section 
oriented inward. Post plate securement (via four M3 bolts), the ESC and Hobbywing BEC are connected 
with strict polarity observation. Meticulous cable management is crucial to prevent pinching or damage. 
ESC outputs are connected to motors, with careful wire routing to avoid arm interference during frame 
folding. The final configuration is illustrated in Figure 11 (right). Wire positioning is confined between the 
metal standoffs limiting arm movement. 
RFD868X and GPS integration follows, utilizing a custom 3D-printed mount (Figure 12, left) for optimal 
spacing. The pre-fabricated cable is connected to the module prior to case installation, as shown in 
Figure 12 (right). 
Module power is sourced from the FC, with reduced power settings to mitigate potential FC damage. 
While a separate 5V BEC would be optimal for full-power operation, the current configuration suffices 
at 20 dBm for the intended application. Final module placement and connection is executed (Figure 13, 
left). 
Top plate installation follows, with consideration for BEC placement and cable routing for PDB Bat+ and 
Bat- connections (Figure 13, right). Securement of top screws completes the assembly process, 
ensuring component stability and overall structural integrity. 
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FIGURE 9. FLIGHT CONTROLLER CENTERED ON THE FRAME (PERSEPECTIVE 1); FLIGHT CONTROLLER 

CENTERED ON THE FRAME (PERSPECTIVE 2) 

 
FIGURE 10. THE PDB CASE (LEFT); PDF MOUNTED IN THE CASE (RIGHT) 
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FIGURE 11. PDB WITH ALL THE CONNECTIONS (LEFT); FLIGHT CONTROLLER CENTERED ON THE 

FRAME (RIGHT) 

 
FIGURE 12. STL FILES FOR THE GPS AND TELEMETRY MODULE MOUNT(LEFT); RFD MODULE 

CONNECTED (RIGH) 
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FIGURE 13. GPS AND RFD MODULE CONNECTED (LEFT); UBEC PLACEMENT AND TOP PLATE (RIGHT) 

 

4.3. Extensions for 5G NTN Research and Experiments 
Component integration necessitated modifications to several 3D-printed parts to accommodate the 
electronic modules. The 360-degree camera is secured via a standardized 1/4”-20 UNC tripod mount. 
The Jetson compute module is affixed using a custom-designed base, adhered to the carbon fiber frame 
with high-strength double-sided adhesive tape due to the absence of compatible mounting points. The 
router is secured using a tension-adjustable battery strap, with its position strategically placed between 
the antennas to prevent lateral displacement, as illustrated in Figure 14. 
To facilitate high-bandwidth communication between the UAV and ground control station (GCS), a 5G 
router has been integrated into the system. This solution provides the requisite data throughput for real-
time telemetry and payload data transmission. While latency is a consideration, it is not critical for this 
application, and we anticipate slightly elevated latency values during operation. 
A key objective of this project is to establish a low-latency, high-fidelity video link between an onboard 
360-degree camera and the pilot. The Ricoh Theta X was selected for its ability to output full-resolution 
imagery via USB interface. The video pipeline involves streaming the camera feed to the onboard 
NVIDIA Jetson Orin compute module, where an RTSP (Real-Time Streaming Protocol) server is 
configured to facilitate connection between the drone and pilot. 
The Jetson Orin, running a customized Linux distribution, leverages its GPU capabilities for edge 
computing and computer vision tasks. This setup enables on-board processing of visual data, potentially 
including real-time fire detection algorithms implemented using Python libraries optimized for NVIDIA 
CUDA cores. 



E7 Document 42 
   

  

 
FIGURE 14. FRONT AND REAR VIEWS OF 5G COMPONENT INTEGRATION 

5. Evaluation of VR Applications: bandwidth and Latency 

5.1. Introduction 
In its latest report [52], the IEEE Standards Association has uncovered four key future-focused trends 
expected to shape the foundational technology landscape for 2024 and beyond: Evolution of the 
Metaverse, Building Trust with Data Governance, Child Safety Online, and Advances in Quantum 
Computing and New Applications. Indeed, the global AR/VR and VR headset market size reached US$ 
16.6 Billion in 2023 and is expected to grow at a compound annual growth rate (CAGR) of 12.44% 
during the period 2024-2032. Concerning market share, the number of AR/VR headsets is rapidly 
growing at an exponential pace with Meta Quest 3 and Playstation VR Headset being the sales leaders. 
Recently, Apple Vision Pro has appeared in the market, selling all their stock. Other brands like Pico 
and HTC have a reasonable market share, while other consumer brands like Xiaomi and Samsung 
have recently announced plans for dealing AR/VR products sometime in 2024. These devices have 
penetrated 1-2% of households in North America, the EU, and China. 
The Metaverse opens new possibilities with a wide range of applications and use cases: (1) 360 gaming 
(either online or local), (2) entertainment (concerts, sports events), (3) training and education, (4) remote 
healthcare, (5) immersive tourism, etc. Some of these use cases and related network-based 
experiments can be found in [53][54]. At a high level, the metaverse can be categorized into these three 
business sectors: Industrial, Enterprise, and Consumer. 
A good example of Industrial Metaverse, as noted in [55], can be Tactile Internet for Remote Surgery: 
This use case delves into the challenges and requirements for remote telesurgery, including ultra-low 
latency (below 1 ms), high reliability (up to 99.9999999%) for UHD medical video over non-public 
networks (NPNs) [56], and massive data rates (up to 1 Tbit/s) to support applications like AR and 
Holographic Type Communication (HTC) [57]. Regarding Enterprise Metaverse, 
Academic/Professional e-Learning explores the potential of immersive technologies VR/AR in 
enhancing educational experiences, both in academic and professional settings. It discusses the 
requirements for high-quality video streaming (up to 2.35 Gbps for eXtended Reality XR), ultra-low 
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network latency (haptic response time to 5.5 ms), and scalability to support a large number of students 
simultaneously [58]. 
Finally, as an example of use cases with high development potential within the Consumer Metaverse, 
Virtual Tourism in Smart City (Consumer Metaverse) focuses on the integration of virtual and 
augmented reality experiences in the context of smart cities, enabling immersive tourism experiences 
and metaverse-driven services for citizens and visitors. These services require efficient mobility and 
security solutions, with strict requirements for low latency (20 ms for Ultra-Reliable Low Latency 
Communications (URLLC)), high data mobility (10 km/h for AR/VR, 0.5 km/h for Telepresence), data 
rate (from 40 to 600 Mbit/s), and reliability (up to 99.9999%) to support these applications [59]. 
While new market opportunities appear with AR/VR products, integrating these technologies 
necessitates significant network upgrades to handle the increased bandwidth and latency demands 
they impose. AR/VR applications heavily rely on streaming high-resolution visuals and spatial data, 
requiring significantly more bandwidth than traditional voice or video calls. 5G networks with near-Gbps 
speeds are crucial for seamless AR/VR experiences. Regarding latency, high delay and delay variation 
(aka jitter) in data transmission can cause nausea and disorientation in VR environments. Real-time 
interaction requires ultra-low latency networks, pushing the boundaries of current telecommunication 
infrastructure. Thus, the proliferation of AR/VR devices will significantly increase overall network traffic, 
demanding higher capacity to avoid congestion and maintain consistent performance. Hence, telecom 
operators need to prepare for a possible exponential growth in the traffic injected by these applications 
into their networks and the related network requirements demanded by them. Among other aspects, 
telcos will be required to update their infrastructure, investing heavily in fiber optic rollouts, edge 
computing infrastructure, and 5G-A/6G deployments. 

5.2. State of the art 
Recent studies have focused on various aspects of AR/VR applications, highlighting critical factors such 
as network performance, privacy concerns, interaction with sensor networks, security vulnerabilities, 
and cloud-rendering architectures. In [60], the authors explore the relationship between Wi-Fi 
performance and the quality of VR streaming experiences. The study investigates the characteristics of 
VR traffic over Wi-Fi networks, particularly focusing on sustained network performance and the impact 
of frame rate on Wi-Fi efficiency. Notably, it identifies a segmentation mechanism in WebRTC-based 
services that affects Wi-Fi airtime consumption. 
The study carried out in [61] addresses privacy risks associated with VR platforms, emphasizing the 
collection of sensitive data by VR sensors and the potential for user identification. The study introduces 
BEHAVR, a framework for analyzing sensor data across VR applications, demonstrating high accuracy 
in user identification. This highlights the importance of considering privacy implications in AR/VR 
research. 
In [62], Makolkina et al. explore the interaction between augmented reality and flying ubiquitous sensor 
networks (FUSN), emphasizing the need for new traffic patterns to ensure the quality of experience. 
The study proposes a novel traffic pattern capturing service space, environment, and user behavior 
models, suggesting advancements in AR technologies. 
The authors of [63] focus on security and privacy issues in mobile AR applications, specifically regarding 
the inference of user location based on network traffic patterns. The study demonstrates a side-channel 
attack against a popular AR application, highlighting vulnerabilities in location-based AR services and 
advocating for mitigation strategies. 
In [64], the authors investigate cloud-rendering architectures for AR on lightweight glasses, emphasizing 
the challenges of low latency and high data rates in wireless networks. The study proposes a realistic 
traffic model based on video data analysis, aiming to assess network performance in cloud-rendered 
AR scenarios. 
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In contrast to the aforementioned studies, in this work we provide a comprehensive overview of traffic 
patterns observed in various AR/VR applications, including onsite video gaming, external rendering 
video gaming, and virtual reality video streaming. While [60] and [64] address network performance in 
VR streaming and cloud-rendering architectures respectively, our study extends this by examining traffic 
profiles across different AR/VR scenarios. Furthermore, we complement [61] by focusing on traffic 
characteristics rather than privacy concerns, thereby contributing to a holistic understanding of AR/VR 
application dynamics. Moreover, while [62] explores new traffic patterns for augmented reality, our study 
extends this by examining traffic profiles in diverse AR/VR contexts. 
In the next sections, we present multiple setups for studying the impact of different AR/VR applications 
on the network. In particular, we have collected packet traces in several application scenarios and 
measured latency and bandwidth requirements as they traverse the access networks. We observe that 
different applications and setups show various traffic profiles, in most cases similar to high-resolution 
video-streaming (like 4K or 8K resolution video). 

5.3. AR/VR Setups 
Gaming on the headset (Hyper Dash Game) 

This scenario represents the use case where a consumer plays a low-resolution game that runs directly 
on the MetaQuest3 hardware (See Figure 15); the computational power required for rendering this 
game is affordable, and the headset itself can run the game without external support. Captured traces 
reveal that Kbps traffic (about 50 packet/s with periodic spikes) goes from the headset to the Internet, 
mainly the movements of the controllers and the keystrokes and commands (shoots, position, etc.), that 
is, important information for online gaming with other players around the world. This behaviour has been 
previously observed in previous online gaming studies (without AR/VR headset), see [65]. 
Gaming supported by external computer 

Figure 15 shows a second gaming scenario where the game does not run on the headset but on a 
physically closed desktop computer. Here, the game demands high computational power (GPUs for 
graphics rendering), thus an external computer is needed to properly operate. The traces reveal a 
continuous flow of around 157 Mb/s from the local PC station towards the AR/VR headset, and again a 
few Kb/s towards the Internet. 
Streaming 360 videos (YoutubeVR) 

In this case, the user is watching a 360-video (Youtube VR application) streamed over the Internet. 
Figure 15 details the scenario and bitrate arrival from the streaming server (Youtube VR), showing an 
average bitrate of 60 Mb/s downstream; this is approximately the typical bitrate of 3x a classical 2K (i.e., 
2048 × 1080) video stream. 
Collaborative business meeting (with Meta Workrooms) 

In the fourth scenario, two users from different cities in the Madrid region (Spain) are having a 
teleconference using Meta Workrooms, an application for teleconferencing (see Figure 15). The two 
users see each other’s avatar and exchange some files while talking and drawing diagrams with their 
fingers. In this case, the traffic exchanged between them is approximately 15 Mb/s. 

5.4. AR/VR Experiments 
Figure 16 shows the bitrate (in bits/s) observed in the four scenarios. Table 4 presents a summary of 
the relevant bitrates, latency, and packet characteristics observed in each scenario. 
In the "gaming on headset" scenario, games are processed directly on the headset’s hardware, resulting 
in lower game resolution and visual quality. This setup transmits only keystrokes and essential online 
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gaming information to the Metro network. We noted that the game performs smoothly. The Internet 
traffic in this scenario closely mirrors that of the "gaming on headset" scenario. 
Regarding the 360-video streaming scenario to Youtube VR, the bitrates vary based on the Internet 
connection and the original video resolution, aligning with typical video streaming values. 
Lastly, in the Meta Workrooms case, the bitrate and latency metrics are in line with those expected for 
FullHD resolution video streaming to a server in the Metro segment. 
 

 
FIGURE 15. OVERVIEW OF THE DEPLOYED SCENARIOS 
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FIGURE 16. SCREENSHOT, BITRATE AND LATENCY MEASURED IN ALL SCENARIOS 
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TABLE 4. SUMMARY OF TRAFFIC PROFILES OBSERVED IN ALL SCENARIOS (AVG: AVERAGE VALUE, 
SD: STANDARD DEVIATION) 

 

5.5. Impact on telecommunication infrastructure 
The rise of metaverse applications presents significant challenges and opportunities for Telecom 
Operators, necessitating substantial investments to enhance network capabilities. These 
enhancements include increased bandwidth, reduced latency, and improved reliability, along with 
advanced Edge Cloud infrastructure to support these bandwidth-intensive applications. 
Operators are currently focusing on several key AR/VR use cases, such as industrial remote operations, 
tele-education in remote or global settings with satellite network assistance, and entertainment 
applications like gaming and virtual tourism. These applications demand stringent network requirements 
to ensure a seamless and immersive user experience. Some of these requirements include [66]: 

• Extreme Low Latency: Essential for real-time social interactions and precise remote control in 
industrial settings, demanding network latencies ranging from 1 ms to less than 0.1 ms for the 
Radio Access Network (RAN). Specific latency needs vary by application, such as 0.5–2 ms for 
dynamic haptic feedback and up to 20 ms for Ultra-High Definition (UHD) video over significant 
distances. 

• High Symmetrical Transmission Bandwidth: To support the complex data needs of AR/VR 
and HTC experiences, both downstream and upstream data rates will need to increase 
significantly. These rates range from tens or hundreds of Mbit/s for 4K video to 1 Tbit/s for 
holographic communications, ensuring a high-quality multisensory experience (QoE) for users. 

• Service Availability: The reliability of these services is critical, with targets ranging from 
99.999% (five nines) to 99.9999999% (nine nines) availability, indicating the network’s expected 
operational excellence. 

To meet the capacity requirements of these emerging use cases, more bandwidth needs to be made 
available in the RAN and other network segments, potentially through the exploitation of new frequency 
bands, massive MIMO processing, and innovative fiber technologies such as multi-core fibers or hollow-
core fibers. 
As AR/VR services and applications continue to gain traction, telecom operators must anticipate and 
address the associated challenges, including the need for higher bandwidth, lower latency, and 
improved reliability. This work aims to shed light on the bandwidth capacity requirements and latency 
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of popular AR/VR applications through four different real experimental settings on the MetaQuest3 
headsets and their potential impact on the network. 

Conclusions 
The integration of High Altitude Platform Systems (HAPS) into non-terrestrial networks (NTN) for 6G 
is a transformative step for global connectivity, as detailed in this document. One of the most 
significant contributions is the demonstration of how advanced AI and machine learning algorithms, 
especially reinforcement learning (RL), can be leveraged to optimize critical aspects of NTNs. These 
include resource allocation, optimal routing, network slicing, and mobility management, all of which 
are essential for the dynamic and heterogeneous environments characteristic of NTNs. 

A key innovation is the development and evaluation of efficient frame transmission strategies tailored 
for LEO satellites and HAPS. The document highlights the limitations of traditional greedy 
transmission approaches and introduces “withhold scheduling” strategies, which balance data 
queues across ground stations and improve both throughput and latency. This approach 
demonstrates that deferring transmissions to more optimal ground stations can significantly enhance 
overall network performance. 

Another important contribution is the application of deep reinforcement learning (DRL) for optimal 
routing in NTNs. The document details how DRL agents, designed with network-specific state, 
action, and reward structures, can dynamically adapt to changing topologies, congestion, and link 
quality. These agents outperform traditional routing algorithms by learning to make real-time 
decisions that minimize latency and maximize throughput, even under the constraints of limited 
bandwidth and high mobility. 

The work also bridges the gap between simulation and real-world deployment. It presents a 
comprehensive methodology that combines simulation-based pre-training with real hardware 
validation. This hybrid approach ensures that algorithms not only perform well in idealized 
environments but also meet the practical requirements and constraints of actual NTN deployments, 
including hardware limitations and unpredictable environmental factors. 

On the experimental side, the document describes the design and assembly of a modular drone 
platform equipped with edge computing (NVIDIA Jetson Orin), 5G connectivity, and advanced 
sensors. This drone serves as a testbed for validating NTN algorithms and architectures in real-world 
scenarios, enabling rapid iteration and practical assessment of new networking solutions. 

The document also provides a detailed analysis of the requirements imposed by emerging 
applications, particularly augmented and virtual reality (AR/VR). Through real-world experiments 
with MetaQuest3 headsets, it quantifies the extreme demands these applications place on network 
bandwidth, latency, and reliability, with some use cases requiring up to 1 Tbps and latencies below 
2 ms. These findings inform the design of MEC-enabled HAPS nodes capable of distributed caching 
and local processing to meet the stringent requirements of next-generation applications. 

From an architectural perspective, the proposal of a convergent NTN-6G framework is a major 
innovation. By integrating multi-access edge computing (MEC) at HAPS nodes, the architecture 
supports distributed content caching, intelligent handover management, and real-time processing, 
which are critical for ensuring seamless service continuity and ultra-low latency across satellite, 
HAPS, and terrestrial segments. 
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In terms of conclusions, the document emphasizes that the successful integration of NTNs into 6G 
requires a holistic approach, combining algorithmic advances, robust hardware design, and rigorous 
experimental validation. It also underscores the necessity of close collaboration between terrestrial 
and non-terrestrial sectors, particularly in spectrum allocation and regulatory frameworks, to realize 
the full potential of HAPS-based NTNs. 

Looking ahead, the document identifies several promising areas for future work. These include 
scaling RL algorithms for mega-constellations with thousands of nodes, developing federated 
learning paradigms suitable for energy-constrained space environments, and standardizing open 
interfaces for unified NTN-TN integration with post-quantum security. Additionally, it calls for 
research into new lightweight materials for HAPS platforms and the continued evolution of hardware 
and software co-design to support the unique demands of 6G NTNs. 

In summary, this document delivers a comprehensive roadmap for the integration of HAPS into NTNs 
for 6G, presenting validated innovations in AI-driven optimization, efficient transmission, hardware 
experimentation, and architectural convergence. These contributions lay the groundwork for the 
deployment of scalable, reliable, and high-performance non-terrestrial networks capable of 
supporting the most demanding applications of the future.  
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