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Abstract 
This Deliverable explores the integration of Reconfigurable Intelligent Surfaces (RIS) into campus-
wide virtualized Radio Access Networks (vRAN), emphasizing the need for scalable control, latency-
aware signalling, and resource-efficient architectures to meet the demands of emerging 6G services. 
We analyze the scalability of mechanically reconfigurable RIS, identifying computational and 
signalling strategies for real-time management of large-scale deployments. Additionally, we 
formulate an energy-aware AP ON/OFF optimization problem that leverages demand forecasting 
and pre-configured RIS steering to achieve significant energy savings without compromising 
coverage. By combining predictive intelligence in vRAN with RIS control, this work provides a 
blueprint for intelligent, context-aware resource management. The findings underscore the 
transformative potential of coordinated RIS and vRAN operation, paving the way for sustainable, 
flexible, and service-oriented next-generation wireless networks.  
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Resumen Ejecutivo 
Este entregable analiza las complejidades de la gestión de RIS reconfigurables mecánicamente en 
redes virtualizadas, como las redes de acceso radioeléctrico virtualizadas (vRAN). Analizamos los 
retos de escalabilidad que surgen al implementar módulos RIS en entornos heterogéneos, 
destacando los principales cuellos de botella, como la asignación de recursos, la escalabilidad del 
plano de control y los protocolos de señalización resistentes a la latencia. Partiendo de esta base, 
exploramos estrategias computacionales y de arquitectura para permitir el control RIS en tiempo real 
dentro de vRAN. A medida que las redes 6G evolucionan para admitir diversas clases de servicios, 
incluidos eMBB, mMTC y URLLC, examinamos cómo los marcos predictivos pueden ampliar las vRAN 
habilitadas para RIS más allá de los objetivos basados en el rendimiento para cumplir con los estrictos 
requisitos de latencia, fiabilidad y aislamiento del servicio. Las siguientes secciones presentan estos 
análisis en detalle y proponen modelos y mecanismos para unificar la gestión escalable de RIS con 
el control inteligente de vRAN. 

Por último, formulamos el problema de la eficiencia energética en un escenario con puntos de acceso 
y RIS, y lo planteamos como un modelo de optimización que tiene como objetivo minimizar el 
consumo energético de la red al tiempo que se garantiza una cobertura continua. En esta 
formulación, los AP permanecen apagados a menos que la demanda prevista de los usuarios requiera 
explícitamente su activación. Para cubrir las lagunas de cobertura durante estos periodos de 
apagado, se utilizan mosaicos RIS preconfigurados para redirigir las señales de los AP vecinos. El 
modelo captura restricciones clave como la precisión de la predicción de la demanda de los usuarios, 
los retrasos en la reconfiguración del RIS y las ganancias de dirección, equilibrando así el ahorro de 
energía con la necesidad de mantener una conectividad sin interrupciones. 
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Executive Summary 
This Deliverable first delves into the complexities of managing mechanically reconfigurable RIS in 
virtualized networks like virtualized Radio Access Networks (vRAN). We analyze the scalability 
challenges that arise when deploying RIS tiles across heterogeneous environments, highlighting key 
bottlenecks such as resource allocation, control plane scalability, and latency-resilient signalling 
protocols. Building on this, we explore computational and architectural strategies to enable real-time 
RIS control within vRAN. As 6G networks evolve to support diverse service classes, including eMBB, 
mMTC, and URLLC, we then examine how predictive, risk-aware, and slice-aware frameworks can 
extend RIS-enabled vRAN beyond throughput-driven objectives to meet stringent latency, reliability, 
and service isolation requirements. The following sections present these analyses in detail and 
propose models and mechanisms to unify scalable RIS management with intelligent vRAN control. 

Finally, we formulate the problem of energy efficiency in and scenario with access points and RIS, we 
formulate it as a mixed-integer optimization model that aims to minimize network energy 
consumption while ensuring continuous coverage. In this formulation, APs remain switched off unless 
forecasted user demand explicitly requires their activation. To bridge coverage gaps during these off 
periods, pre-configured RIS tiles are used to redirect signals from neighboring APs. The model 
captures key constraints such as user demand prediction accuracy, RIS reconfiguration delays, and 
steering gains, thereby balancing energy savings with the need to maintain seamless connectivity. 
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1. Introduction 
The evolution toward 6G and beyond is marked not only by the pursuit of higher data rates, reduced 
latency, and enhanced reliability, but also by the pressing imperative of energy efficiency. As 
networks densify and more devices come online, the energy footprint of the Radio Access Network 
(RAN) grows rapidly, prompting the exploration of fundamentally new paradigms in how wireless 
systems interact with the environment. Among these paradigms, Reconfigurable Intelligent Surfaces 
(RIS) have emerged as a groundbreaking solution. By enabling programmable control over 
electromagnetic wave propagation, RIS can shape the wireless channel itself, providing opportunities 
to redirect, focus, or suppress signals in a passive or near-passive manner. Their potential to 
significantly reduce the reliance on active relaying or power-hungry beamforming makes them ideal 
candidates for the realization of energy-efficient intelligent environments [1]. 

This deliverable is devoted to exploring the algorithmic challenges and strategies for maximizing 
energy efficiency in RIS-enabled networks, particularly in scenarios where RIS are not only passive 
reflectors but intelligent, context-aware agents capable of making informed decisions. Two 
complementary perspectives guide our investigation. First, we examine mechanical RIS (M-RIS), an 
emerging class of reconfigurable surfaces that achieve electromagnetic control through physical 
deformation or mechanical actuation rather than active electronic switching. Examples include 
kirigami-based surfaces, MEMS-tuned reflectarrays, or soft-material metasurfaces whose geometry 
can be changed with minimal power consumption. These systems promise ultra-low steady-state 
power and can potentially operate in a battery-less fashion. However, they also pose unique 
algorithmic challenges, as their reconfiguration latency (ranging from tens of milliseconds to 
seconds) and actuation fatigue introduce constraints that are fundamentally different from those of 
electronically controlled RIS. The need for proactive, long-horizon planning and wear-aware 
optimisation compels a rethinking of traditional RIS algorithms. In this context, we investigate how 
motion-aware scheduling, long-term channel prediction, and lightweight heuristics can be adapted 
or reinvented to work within the unique capabilities and limitations of mechanical RIS [2]. 

The second perspective we take is more integrative and forward-looking: we explore the joint 
optimisation of RIS with other network technologies to build energy-aware, cross-domain decision 
frameworks. In particular, we focus on two promising vectors of integration: (i) virtualised RAN (vRAN) 
architectures and (ii) Unmanned Aerial Vehicles (UAVs). Virtualised RAN separates network functions 
into cloud- or edge-hosted containers, enabling global views of network state, traffic forecasts, and 
user trajectories. This centralised intelligence makes it possible to treat RIS as a dynamically 
coordinated component in the RAN ecosystem. By leveraging vRAN control and telemetry such as,  
buffer states, handover maps, or gNB-resident learning models, RIS decisions can be informed by 
future context, such as expected user movement or traffic bursts. We explore how this foresight 
enables proactive surface programming and energy-aware trade-offs between computation and 
propagation control. Moreover, the bidirectional nature of the integration allows RIS telemetry to 
inform vRAN scheduling, closing the loop in a symbiotic system [3]. 



SORUS-RIS-A2.3-E2 (E13) 10 
   

  

Similarly, the synergy between RIS and UAVs opens new opportunities for energy-adaptive aerial 
coverage. UAV-mounted RIS can act as mobile reflectors or passive relays, dynamically repositioned 
based on spatiotemporal demand or energy constraints. Conversely, ground-deployed RIS can assist 
UAV communications by creating virtual line-of-sight paths or offloading some of the channel 
manipulation tasks, thereby reducing UAV transmission power. The joint optimisation of RIS pose, 
UAV path planning, and beamforming strategy leads to a complex but rewarding design space where 
decisions across the air and ground domains must be harmonised. From an algorithmic standpoint, 
this integration demands methods that are robust to mobility, efficient under constrained 
computation, and capable of real-time adaptation to fast-changing topology and channel conditions 
[4]. 
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2. Mechanical RIS for Energy Efficiency 
Reconfigurable Intelligent Surfaces (RIS) have emerged as a central pillar in the roadmap toward 
energy-efficient 6G networks. By shaping the wireless channel through programmable meta-atoms, 
RIS offer a passive or near-passive alternative to traditional relays, enabling directional control of 
radio waves without the need for high-power RF chains. While most RIS research and prototypes 
have focused on electronic tuning using CMOS switches, PIN diodes, or varactors, there is growing 
recognition of the transformative potential of M-RIS [2]. Unlike their electronically tuned 
counterparts, M-RIS leverage physical deformation or translation to alter electromagnetic response, 
using actuation mechanisms such as cam-driven reflectarrays, kirigami-based folding metasurfaces, 
and soft-materials like liquid crystal elastomers (LCEs). These solutions consume power only during 
reconfiguration and exhibit non-volatile mechanical states, opening the door to ultra-low-power and 
even battery-less implementations that can remain static for hours or days without drawing any 
energy [5]. 

cent research has shown that mechanical RIS can achieve advanced beamforming capabilities while 
maintaining negligible steady-state power consumption. Unlike electronically controlled RIS, 
mechanically actuated surfaces, such as MEMS-based reflectarrays, kirigami-inspired metasurfaces, 
and soft-material structures, leverage physical reconfiguration to manipulate electromagnetic 
wavefronts without the need for continuous biasing [6]. These systems inherently adopt an event-
driven actuation model, where energy is only expended during configuration changes, enabling 
passive state retention and cutting steady-state power requirements by several orders of magnitude 
compared to PIN-diode-based RIS. Such approaches have demonstrated efficient control over 
reflection phase and beam direction, with experimental works reporting low-latency actuation in the 
millisecond-to-second range and energy savings exceeding 30–50 dB relative to conventional 
electronic tuning [7]. 

From an algorithmic standpoint, M‑RIS introduce new challenges that demand a departure from 
standard RIS control models. Traditional beamforming approaches rely on millisecond-scale control 
loops that fine-tune electronically controlled metasurfaces using high-rate CSI updates. In contrast, 
mechanical RIS operate with reconfiguration timescales from tens of milliseconds up to several 
seconds, depending on actuator dynamics, mechanical inertia, and damping characteristics. Such 
delays make physical actions costly and non‑reversible, fundamentally altering the design of the RIS 
control stack, covering sensing, estimation, prediction, and optimization. Consequently, modern 
M‑RIS controllers must convert delay into foresight: investing in accurate channel prediction, efficient 
sensing strategies, and energy-aware scheduling to maximize network gains while respecting strict 
motion budgets [8]. 

Channel modeling and state acquisition in M-RIS-enhanced systems extend the conventional 
cascaded RIS framework by explicitly incorporating pose variables, such as rotation angles, 
displacements, or hinge states of the surface elements, into the channel representation. Unlike 
electronically controlled RIS, where phase states can change rapidly, these mechanical variables 
evolve slowly and exhibit strong temporal correlation over consecutive channel blocks. This property 
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enables the use of sequence learning techniques, such as sparse-connected LSTM (SCLSTM) and 
Transformer-based models, to predict future channel states from historical CSI. Such approaches are 
able to achieve near-optimal reconstruction accuracy in slowly varying or quasi-static channels. 
Furthermore, the low actuation frequency of mechanical RIS supports event-triggered channel 
estimation strategies, where pilot transmission is initiated only when sensors or encoders detect 
mechanical updates. This paradigm significantly reduces pilot energy consumption and aligns 
naturally with the slow, event-driven dynamics of M-RIS [9]. 

Once the geometry-aware channel is estimated or inferred, the next step is optimising phase and 
pose configurations to maximise spectral efficiency or minimise energy use. Here, classic alternating 
maximisation and gradient descent remain valuable for small panels, offering convergence in O(N·T) 
time where T is the number of iterations. However, M-RIS favour energy-aware objective functions 
that include motion cost, reconfiguration delay, and fatigue penalties. Fractional programming offers 
one avenue to solve such problems, allowing for closed-form updates and guaranteed monotonicity 
in energy-efficiency objectives [10].For large panels (N ≥ 256), manifold optimisation (MO) has 
emerged as a low-complexity alternative to semidefinite relaxation (SDR), exploiting the geometric 
structure of unit-circle reflection coefficients or SO(3) rotations to speed convergence while 
preserving feasibility [11]. Where mechanical actuation allows only coarse settings, heuristic meta-
algorithms like particle swarm optimisation (PSO) have proven effective, particularly for D2D and IoT 
applications PSO has been shown to yield near-optimal performance in joint power and phase-shift 
optimization for RIS-assisted D2D underlay systems, with lower power consumption compared to 
iterative baselines [12]. 

In multi‑service scenarios, joint optimisation of M‑RIS pose and transceiver beamforming becomes 
key: the RIS must support multiple spatial directions and per-user power budgets. A natural control 
architecture separates slow (second‑scale) mechanical actuation from fast (millisecond‑scale) 
base‑station precoding. Some preliminary studies using deep reinforcement learning for RIS-enabled 
systems—and actor–critic architectures in particular—suggest the potential to incorporate actuator-
aware reward structures (e.g., accounting for motion cost or actuator wear) [13]. While explicit 
“fatigue‑aware” DRL schemes that double actuator lifetime and preserve 95% of throughput have 
not yet been demonstrated in RIS literature, such an approach is conceivable in mechanical RIS 
scenarios informed by analogous work in degradation-aware control domains. Similarly, recent 
studies on energy‑efficiency optimization of [14] confirm significant gains under finite blocklength 
constraints. 

These developments culminate in a closed-loop controller architecture where RF pilots, inertial 
readings, and actuator telemetry feed into a predictor (e.g., LSTM or Transformer) that estimates 
future CSI. The output drives a deterministic optimiser (e.g., fractional programming) or a learning 
agent (e.g., DRL), which then generates the next phase or pose command. Commands are dispatched 
through low-bit-rate buses to the M-RIS drivers. This approach builds upon advances in 
transformable kirigami-based metasurfaces [6] and optimization frameworks for multi-cell MIMO 
communications with RIS [15], highlighting the potential of predictive and coordinated control in M-
RIS-enhanced wireless systems. 
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Nevertheless, several research challenges remain open. Most simulation platforms assume 2D 
propagation and narrowband operation; real-world 6G use cases demand 3D ray-tracing with 
frequency-selective, polarisation-aware models. There is a lack of public datasets that include both 
RF traces and mechanical actuator states, making reproducibility and benchmarking difficult. While 
manifold solvers have low iteration complexity, scalability remains an issue at massive element counts 
unless accelerated using GPU or FPGA-based inference [16]. Lastly, there is a cross-layer blind spot 
in current designs: PHY/MAC protocols often assume µs-scale responsiveness, which is incompatible 
with 100 ms–1 s actuator latencies; new scheduling strategies are needed to reconcile physical-layer 
rigidity with upper-layer elasticity [17]. 

In conclusion, mechanical RIS introduce a paradigm shift in energy-efficient wireless control. By 
replacing continuous power draw with intelligent, slow, and deliberate motion, they turn actuation 
into a planning problem, favouring foresight over reactivity. This calls for an integrated algorithmic 
stack that blends channel prediction, efficient estimation, energy-aware optimisation, and fatigue-
aware scheduling. With appropriate coordination and cross-domain support, mechanical RIS stand 
to become one of the defining enablers of sustainable, smart, and predictive 6G radio environments. 
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3. Joint Optimisation of Reconfigurable Intelligent Surfaces 
and Virtualised RAN: Toward Proactive, Energy-Aware 6G 
Systems 

The transition from monolithic base station architectures to disaggregated and vRAN ecosystems 
marks one of the most significant evolutions in the design of cellular systems. By soft-splitting the 
radio stack across cloud-native and edge-executed functions, ranging from the distributed unit (DU) 
and central unit (CU) to the radio unit (RU), vRAN opens the door to a global view of network state. 
This panoramic situational awareness encompasses user mobility traces, per-UE buffer occupancy, 
real-time SINR measurements, HARQ statistics, and even QoS profiles extracted from slice policies. 
When such a system is integrated with RIS, programmable metastructures that shape the wireless 
channel, the RAN no longer merely reacts to the environment but actively designs it. This coupling 
between the algorithmic intelligence of vRAN and the physics-manipulating capability of RIS 
redefines wireless system architecture, especially in the context of energy-efficient design and 
proactive link control. 

Initial demonstrations of this paradigm are beginning to emerge in the context of intelligent and 
softwarized networks. For example, network intelligence frameworks in 6G envision deploying RIS 
control functions as xApps within the RAN Intelligent Controller (RIC), leveraging standardized A1/E2 
interfaces to integrate KPIs such as CQI trends, traffic loads, and beam management metrics into 
predictive control loops [18]. Complementary advances in reconfigurable metasurfaces highlight the 
feasibility of low-power mechanical and MEMS-based RIS platforms, whose actuation timescales are 
compatible with predictive control informed by location-aware user trajectory forecasting. Recent 
reviews detail tuning mechanisms, including electromechanical, MEMS, and kirigami approaches, and 
emphasize their potential for integration with machine learning-based controllers, such as LSTM or 
Transformer predictors, to anticipate user mobility within the reconfiguration latency budget of these 
devices [19]. 

This proactive paradigm shifts RIS control from reactive adaptation to predictive orchestration. 
Emulated testbeds like Colosseum support such coordinated behavior, enabling joint scheduling of 
RIS phase updates and distributed DU beamforming within a softwarized Open RAN framework with 
end-to-end realism and hardware-in-the-loop validation [20]. These capabilities allow experiments 
to faithfully reproduce latency-sensitive scenarios and assess the timing impact of RIS coordination 
across diverse conditions. Additionally, by clustering surface reconfigurations around predicted high-
throughput intervals, rather than continuous or periodic sweeping, it becomes possible to 
dramatically reduce mechanical actuator duty cycles, enhancing energy efficiency by an order of 
magnitude compared to reactive or uniform scheduling.  

The synergy extends beyond beam steering. In vRAN, network slices can dynamically adjust 
numerology, modulation and coding schemes (MCS), and HARQ settings, enabling central schedulers 
to co-design waveform parameters and propagation paths. For example, ultra-reliable low-latency 
(URLLC) slices demanding sub-millisecond reliability may be configured with a short-symbol 
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numerology (e.g., μ = 3), while the RIS is tuned to enhance direct-path signal gain—even at the 
expense of multipath richness potentially beneficial to adjacent enhanced mobile broadband (eMBB) 
slices. Conversely, in thermal-constrained DU clusters, the NFV orchestrator can downclock CPUs and 
offload performance requirements to the RIS, requesting additional beam gain (e.g., 6 dB) to preserve 
QoE while respecting thermal budgets. Fractional-programming-based energy-efficiency designs for 
RIS‑enhanced systems have demonstrated 15–20% overall gains in energy efficiency through joint 
optimization of transmit power and phase shifts in coexistence scenarios (e.g. macro/pico 
deployments) across sub-6 GHz bands [21]. 

From an architectural perspective, this integration is enabled by the use of virtualized and 
containerized control frameworks. RIS controllers can be deployed as microservices within cloud-
native vRAN environments, leveraging orchestration platforms to scale resources according to 
demand. Furthermore, software-defined networking (SDN) and policy-driven control frameworks, 
which are increasingly adopted in modern RAN and transport networks, can be extended to manage 
RIS devices and coordinate their operation with base station functions, supporting automated, 
intent-based configurations and real-time adaptation [22]. 

The information flow in M-RIS systems is inherently bidirectional. While RIS hardware is increasingly 
enhancing the environment via passive beamforming, it can also integrate embedded sensors to 
relay environmental feedback upstream. This RIS telemetry enriches the RAN controller’s visibility 
into blockage events, scattering dynamics, and interference patterns, supporting more adaptive 
control loops. 

Additionally, privacy-preserving methods such as federated or over-the-air learning have shown 
promise in enabling distributed collaboration between gNBs and RIS controllers. For instance, over-
the-air federated learning frameworks integrating RIS-assisted AirComp have been used to jointly 
optimize local model updates, reducing raw CSI exchange while achieving robust model convergence 
across distributed edge devices and base stations [23]. This federated setup enables coordinated 
channel prediction and mobility modeling without centralized data aggregation. 

Finally, systems that can adapt resource allocation across DU instances, RIS adjustments, and edge 
deployment stand to gain significantly in energy-performance trade-offs. Simulations embedding 
real CPU and fronthaul power models demonstrate that mechanical RIS, with negligible actuation 
power, expand the scenarios in which RIS-based propagation control (e.g. choosing surface retuning) 
outperforms base station beamforming or additional DU instantiation, especially under constrained 
energy budgets [24]. This flexibility allows controllers to adopt longer-term strategies: clustering 
reconfigurations to high-throughput windows or preserving actuator longevity by holding 
configurations static during burst periods. 

That said, challenges remain. High-speed interfaces for streaming RIS configurations are still 
proprietary, posing barriers to vendor interoperability. The control plane must also be hardened 
against failure, ensuring that xApp misbehavior does not ripple through the system. More 
fundamentally, the field lacks rigorous real-time guarantees for learning-based controllers, 
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particularly in latency-sensitive URLLC slices, a topic currently under investigation by O-RAN Working 
Group 3 and IEEE 802.1 TSN initiatives [25]. 

3.1. Scalability and Resource Allocation in Large-Scale RIS-Enabled 
vRAN Architectures 

As RIS transition from laboratory-scale proofs of concept to large-scale deployments in urban and 
campus-wide networks, scalability becomes a central concern. While previous sections have 
highlighted the algorithmic integration of RIS with vRAN controllers and the energy-aware 
optimisation strategies made possible through such coordination, these benefits must now be 
extended to systems with potentially hundreds or thousands of RIS tiles, distributed across 
heterogeneous environments. In this context, resource allocation, control plane scalability, and 
latency-resilient signalling protocols emerge as critical bottlenecks. This subsection builds upon 
those earlier insights by tackling the specific challenges that arise when scaling RIS deployments in 
vRAN-enabled networks and outlines the computational and architectural strategies needed to 
ensure practical, real-time control. 

One of the foremost challenges is resource management in multi-user, multi-RIS environments. As 
RIS units are introduced across dense urban areas, the network must decide not only which users 
should benefit from RIS assistance, but also which RIS panels should be activated, and how 
bandwidth and scheduling resources should be jointly allocated. Traditional user scheduling 
algorithms, such as proportional fair (PF) or round-robin, are insufficient in this context because the 
availability of a RIS-assisted path fundamentally alters the link budget and the interference profile. 
Recent studies have introduced utility-aware scheduling for RIS-enhanced wireless networks by 
incorporating predicted CSI augmented with user mobility forecasts to prioritize which link-RIS 
interactions warrant active enhancement. In [26] the authors model users and RIS as nodes in a graph 
and employ a graph neural network (GNN) to simultaneously schedule users and design RIS 
configurations. This permutation-equivariant GNN directly maps a limited set of pilot measurements 
into scheduling and phase-shift actions, delivering high throughput and fairness with lower training 
overhead compared to conventional channel-estimation first schemes. 

A complementary approach appears [27], where a bipartite GNN model captures the interactions 
between users and multiple RIS tiles. Each node communicates via message passing and jointly 
optimizes BS beamforming and RIS phase shifts. The method achieves strong generalization to 
varying network sizes and shows notable scalability and performance improvement over traditional 
optimization schemes. 

As the number of RIS panels scales, centralized controllers such as the RAN Intelligent Controller 
(RIC) face increasing latency and signaling overhead. To address this, recent research advocates for 
distributed and hierarchical control architectures, where local edge agents, co-located with RIS 
panels or edge Dus, make low-latency, context-specific decisions, while overarching policies are 
managed centrally. 
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One promising direction involves multi-agent reinforcement learning (MARL). In this framework, each 
RIS agent learns its own policy based on partial observations, with periodic synchronization achieved 
via federated updates. For example, recent work in distributed MARL for edge caching demonstrates 
how local agents can optimize using partial views while occasionally exchanging model gradients to 
ensure policy alignment and convergence across nodes [28].  

Similar architectures could be readily adapted to RIS environments, where each panel optimizes its 
reflectarray configuration to local channel conditions, yet contributes to network-wide objectives. 
While such distributed schemes offer scalability benefits, ensuring global stability and convergence 
remains a challenge, especially under adversarial or fault-prone conditions, such as sudden link 
failures or RIS hardware impairments. Careful coordination and convergence guarantees are essential 
to balance local autonomy with consistent network-wide performance. 

Another underexplored dimension is the control-plane overhead and latency associated with 
updating large RIS arrays. Fine-grained phase or amplitude control requires transmitting hundreds 
to thousands of parameters per panel. When updates must occur every tens or hundreds of 
milliseconds, as in electronic RIS handling highly mobile users, the signaling burden can overwhelm 
fronthaul or backhaul links. 

To reduce this overhead, several studies have explored control signal compression techniques.  [29] 
reviews codebook-based solutions for RIS, showing how predesigned reflection codebooks enable 
phase-shift selection with minimal signaling cost. These methods strike a trade-off between channel 
estimation complexity and feedback overhead, yielding communication performance nearly on par 
with exhaustive estimation approaches while significantly reducing pilot or update signaling. 

Separately, [30] propose a differential data-aided beam training method that avoids separate pilot 
overhead altogether. Their approach lets the system infer optimal RIS configurations based on 
differential statistics of received data packets rather than explicit codeword testing. Simulations 
demonstrate that this method drastically lowers signaling overhead while maintaining effective beam 
alignment under mobility. 

Mechanical RIS control loops introduce unique latency challenges: while mechanical surfaces are 
extremely energy-efficient, eliminating steady-state power draw, they may require tens to hundreds 
of milliseconds to reconfigure, orders of magnitude slower than electronic PIN diode RIS. This latency 
mandates predictive control, where RIS decisions are dispatched based on forecasted user behavior 
and traffic trends. In parallel domains such as vehicular motion prediction, LSTM encoder–decoder 
architectures have achieved high accuracy forecasting several steps ahead in time-series data, 
validating their applicability for predicting movement over short horizons (e.g., ~100 ms) [31]. 

In terms of resilience and scalability, large-scale RIS deployments often face partial observability and 
panel-level failures, whether due to mechanical wear, power outages, or communication disruptions. 
In analogous resource allocation problems, such as renewable microgrid scheduling, distributionally 
robust optimization frameworks have been employed to manage risk and uncertainty by modeling 
probabilistic failure or supply shortages. Those frameworks maintain performance under system 
irregularities by optimizing decisions against worst-case distributions [32]. While not RIS-specific, 
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these results indicate how availability-aware or failure-aware RIS orchestration could be 
implemented using similar robust optimization techniques. 

3.2. Reliability, QoS, and Slicing in RIS-Enabled vRAN Systems 
As 6G advances toward supporting heterogeneous services, enhanced eMBB, massive Machine-Type 
Communication (mMTC), and especially URLLC, RIS-enabled vRAN systems must evolve beyond 
throughput optimization to guarantee latency, reliability, and service isolation. Recent results 
highlight how predictive, risk-aware, and slice-aware frameworks can enable this transformation. 

RIS can substantially reduce latency in URLLC uplinks by improving link quality and mitigating 
blockage through controlled reflections. In particular, [28] propose an ADMM-based RIS phase-shift 
optimization framework that achieves lower transmission latency under reliability constraints, 
outperforming conventional SDR techniques while supporting short-packet regimes typical of 
URLLC. 

To maintain robust reliability, research has turned to risk-aware optimization. Frameworks that model 
uncertainty in prediction errors and RIS actuation delays can choose configurations resilient to 
deviations from nominal channel conditions. For example, distributed risk-aware learning methods 
studied in URLLC resource allocation settings show substantial resilience to unpredictable traffic 
bursts and latency variability [29]. 

In multi-slice environments, RIS-assisted resource orchestration has also shown benefits in balancing 
conflicting QoS objectives. Systems that jointly manage eMBB and URLLC slices using heuristic 
scheduling, puncturing, or DRL-based techniques (e.g., correlated Q-learning or risk-sensitive slicing) 
have demonstrated reliable URLLC performance (~95% acceptance rate) while limiting the impact on 
eMBB throughput and fairness, reducing SLA violations and improving utility trade-offs [30]. 
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4. Informed RIS: Proactive Optimization via Prediction-Driven 
Control 

Conventional RIS systems operate in a purely reactive mode: they await channel-state feedback, then 
tune elements to restore link quality. In contrast, Informed RIS (I-RIS) anticipates future changes in 
the radio context, such as user mobility, blockage, and channel evolution, and reconfigures 
proactively, turning latent actuator delays into scheduling margins. This is especially critical for 
mechanical RIS (e.g., liquid-crystal or MEMS-actuated surfaces) whose physical hardware may take 
tens to hundreds of milliseconds to settle, far longer than electronic PIN-diode tuning [36]. 

To enable prediction, I-RIS leverages multiple sensing streams: 

• gNB telemetry (e.g. AoA, Doppler): arriving at millisecond scales, these feed into kalman-
filtered sequence models to predict short-term mobility. 

• Integrated sensing and communications (ISAC): Hybrid ISAC systems, infer 3D user position 
and blockage without requiring full CSI, using mid-range echoes processed via neural 
networks [37, 38]. 

• Edge sensors (radar or vision): lightweight object detectors are fused via graph GNNs to 
identify obstacles, trajectories, or LOS transitions with low latency. 

• RIS encoder feedback: mechanical surfaces report gear angle or strain; anomaly autoencoders 
monitor for wear and misalignment. 

By transforming RIS into prediction-aware actuators, I-RIS fundamentally changes the way latency 
and mobility are managed in RIS-enabled 6G systems. Rather than reacting after-the-fact, surfaces 
anticipate channel dynamics and act in advance. Techniques such as trajectory prediction, channel 
forecasting, and event-triggered control collectively neutralize the limitations of mechanical 
actuation latencies. The result is improved throughput, and remarkable energy savings. 

In the next section, we will introduce a simulation environment designed to empirically contrast 
reactive and informed RIS strategies, demonstrating these gains under realistic mobility scenarios 
and mechanical constraints. 

4.1. Energy-Aware ON/OFF Optimisation of Access Points with 
Predictive, Pre-Configured RIS Support 

Dense Wi-Fi and small-cell deployments consume a disproportionate share of network energy, 
largely because access points (APs) remain powered even when user demand is low. The advent of 
predictive radio intelligence, where a virtualised RAN already forecasts user trajectories and traffic, 
and the availability of mechanically reconfigurable RIS that can steer coverage on demand, enables 
a novel form of joint AP sleep scheduling: keep an AP switched off unless the demand forecast says 
at least one user will enter its footprint, and rely on a neighbouring RIS (pre-oriented during the 
prediction window) to supply interim coverage whenever possible. 
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Below we cast this idea into a mixed-integer optimisation problem. While similar energy-
minimisation formulations exist for classical base-station sleep modes, our model extends them by 
(i) adding prediction-based demand variables and (ii) explicitly modelling RIS configuration delay 
and steering gain based on recent works in predictive RIS control [36]. 

Symbol Meaning 

𝑀 Number of candidate Aps 

𝑅 Number of RIS panels 

𝑢$!,# 
predicted number of active 
users in AP m’s cell at slot t 

(can be 0) 

𝑃!$%, 𝑃!
$&& 

power draw of AP m when 
on/off 

𝑃'!$() 
energy for one mechanical RIS 

re-orientation 

𝐺!' 
downlink gain (dB) a user in 

cell m receives when covered 
via RIS r 

𝜏' actuation delay of RIS r (slots) 

𝛾!*% 
minimum required SINR per 

user 

TABLE 1: DEFINITION OF THE PARAMETERS 

 

A binary control horizon of length T allows us to plan AP state and RIS moves ahead of time, in 
step with prediction accuracy. 

4.2. Problem Definition 
• 𝑥!,# ∈ 	 {0,1}	: 1 if AP m is on at slot t. 

• 𝑦',# 	 ∈ 		 {0,1}: 1 if RIS r is re-oriented (a mechanical move) during slot t. 

• 𝑧!,',# ∈ {0,1}: 1 if traffic for cell 𝑚 is served via RIS 𝑟 at slot t (implies that r finished its 
move by t). 

The objective is to Minimise Energy Expenditure, to arrive at the cost function we begin by 
recognising that, in a dense small-cell layout, energy expenditure is dominated by two qualitatively 
different sources. The first is the static or hold power of each access point: whenever an AP is left on, 
even in the absence of traffic, it draws tens of watts for baseband, backhaul, and cooling subsystems; 
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when it is turned off, that draw collapses to a standby value that is typically one or two orders of 
magnitude lower. The second source is the dynamic energy required to re-orient a mechanical RIS: 
although a move may take several hundred milliseconds, experiments show that the motor or soft-
actuator is energised only during the transition and consumes energy in the range of millijoules, after 
which the surface stays in its new pose without bias current. Hence, over an optimisation horizon of 
T slots, the system’s cumulative energy can be expressed as a sum of per-slot AP consumption plus 
occasional one-shot actuation costs. Formally, for any slot t we pay 𝑃!$% if AP m is active (variable 
𝑥!,# = 1) and 𝑃!

$&&otherwise; aggregating over all M APs and all T slots gives the first double sum. In 
parallel, each time we trigger a mechanical move on RIS r (𝑦',# = 1we incur its one-shot energy 𝑃'!$() ; 
summing those impulses across R surfaces and T slots yields the second term. No cross-coupling 
term is needed in the objective because RIS actuation energy and AP hold power are physically 
independent, the coupling appears instead in the constraints, where RIS steering can enable AP 
shutdown. By pulling these two additive components under a single summation over time, we obtain 
a linear, decomposable objective that cleanly separates what costs energy (AP uptime, RIS moves) 
from which configuration is admissible (handled later by demand-satisfaction, latency, and SINR 
constraints). This linearity is deliberate: it keeps the problem within the realm of mixed-integer linear 
programming, allowing exact or near-exact solvers to scale to realistic network sizes while faithfully 
capturing the dominant energy trade-offs identified in prior empirical studies of AP sleep mode and 
mechanical-RIS actuation [38]. 

 

min
+,,,-

:;: <𝑃!$%𝑥!,# + 𝑃!
$&&>1 − 𝑥!,#@A +:𝑃'!$()𝑦',#

.

'/0

1

!/0

B
2

#/0

 

 

The AP sleep cost dominates long horizons; RIS moves incur one-shot mechanical energy only 
when executed. 

Constraints 

1. Demand satisfaction (binary logic) 
For every AP m and time t: 

𝑢$!,# = 0 → 𝑥!,# = 0	(𝑛𝑜	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑢𝑠𝑒𝑟𝑠	 → 𝑠𝑤𝑖𝑡𝑐ℎ	𝑜𝑓𝑓	𝑢𝑛𝑙𝑒𝑠𝑠	𝑅𝐼𝑆	𝑐𝑜𝑣𝑒𝑟𝑠) 

If predicted demand exists, either the AP stays on or at least one RIS covers: 

𝑢$!,# > 0 → 𝑥!,# +:𝑧!,',# ≥ 1
.

'/0

 

2. RIS actuation-coverage coupling 
A RIS can serve cell m at slot t only if its latest move finished at least 𝜏' slots ago: 

𝑧!,',# ≤ 1 − : 𝑦',3

#

3/#45!60
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3. Gain and SINR guarantee 
If coverage is via RIS, the delivered link must satisfy 

𝑆𝐼𝑁𝑅!,',#(𝐺!') ≥ 𝛾!*% 

(Here 𝐺!' absorbs steering loss and path-loss; if the constraint is violated, set 𝑧!,',# = 0 

4. Binary domains 
𝑥!,# , 𝑦',#𝑧!,',# ∈ {0,1} 

4.3. Results 
We consider a nine-site layout that spans 300 m × 200 m. To introduce spatial irregularity, the centre-
right site is deliberately left without an access point, creating a coverage gap that must be bridged 
either by neighbouring AP beams or by steerable surfaces. Three mechanical RIS panels are installed 
on lamp-posts or rooftops at (75 m, 50 m), (225 m, 50 m) and (150 m, 175 m). Each RIS can serve a 
single cell at a time and incurs 6 J every time it retargets but draws no hold power. All APs consume 
40 W when active and only 6 W in stand-by, translating to 2 J versus 0.3 J per 50 ms scheduling slot. 

 
FIGURE 1: SCENARIO FOR THE OPTIMIZATION PROBLEM WITH RIS AND ACCESS POINTS. 
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Twenty pedestrians move according to a distance-weighted Markov chain, where they are more likely 
to walk to nearby cells than to make long-distance jumps across the map. The left figure shows the 
access points (APs, blue squares), RIS panels (gold triangles), and a subset of user trajectories (pastel 
paths). Dashed lines indicate sample RIS reflections during the initial time slot. Due to the absence 
of the center-right AP, coverage in that area is primarily sustained by the upper-right RIS. 

The simulation spans 300 time slots, with a perfect mobility predictor assumed: the controller has full 
foreknowledge of binary demand (i.e., whether at least one user is present) in every cell and slot. This 
assumption is consistent with the results on mobility prediction reported in Deliverable SORUS-RAN-
A3.2-E2 (E17), where an accuracy of 92% was achieved based on information collected from wireless 
networks. 

 
FIGURE 2: SIMULATED MOBILITY MODEL BEWTEEEN ACESS POINTS. 

 

Greedy control policy. For each slot the algorithm: 

1. turns on an AP only if its cell hosts multiple users or no RIS can currently cover it; 

2. otherwise chooses the nearest idle RIS (or one already pointing at that cell) to steer energy 
toward the lone user, adding the 6 J move cost only when the orientation changes. 
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FIGURE 3: ENERGY CONSUMPTION COMPARISON: BASELINE VS. INFORMED 

 

Energy comparison. Over the full horizon: 

• Baseline (all APs on): 4800 J 

• Prediction-aware schedule: ≈ 2196 J 

The informed strategy therefore saves ≈ 47 % total energy, even after accounting for the 12 J spent 
on two RIS retargetings, by de-energising idle APs and letting passive panels handle one-off 
demands. This richer scenario confirms that as networks scale, pre-configured, prediction-driven RIS 
control can suppress nearly half of the infrastructure energy budget while leaving user service intact. 
Further gains are expected from more sophisticated mixed-integer or RL policies, multi-beam RIS 
hardware, and partial-information prediction, each of which can be incorporated into the same 
simulation harness in future work. 
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5. Summary and Conclusions 
This Deliverable highlight that the integration of RIS into campus-wide vRAN deployments demands 
scalable control mechanisms, latency-aware signalling, and resource-efficient architectures to 
support the diverse requirements of emerging 6G services. By addressing these challenges, 
predictive, risk-aware, and slice-aware frameworks can transform RIS-enabled vRAN from a 
throughput-centric paradigm into a service and reliability-driven infrastructure. 

Additionally, our formulation of energy-aware AP ON/OFF optimization with RIS assistance 
demonstrates the potential for significant energy savings in dense network scenarios without 
compromising coverage. By leveraging demand forecasting and pre-configured RIS steering, this 
approach extends classical energy minimization strategies to accommodate the unique operational 
constraints of RIS. Together, these findings underscore the need for intelligent, predictive, and 
scalable control frameworks that unify RIS management and vRAN capabilities, paving the way for 
practical, energy-efficient, and service-oriented next-generation wireless networks. 

The analysis presented in this Deliverable provides a foundation for advancing the collaboration 
between vRAN and RIS by addressing both the operational and architectural aspects required for 
their joint deployment. By examining the scalability of mechanically reconfigurable RIS in large, 
campus-wide networks, this work identifies the computational and signalling strategies necessary to 
manage thousands of distributed RIS tiles in real time, ensuring that vRAN controllers can effectively 
orchestrate RIS behavior across heterogeneous environments. This insight is crucial for enabling 
predictive, low-latency coordination where RIS configurations dynamically adapt to changing user 
locations and service demands. Furthermore, the formulation of the energy-aware AP ON/OFF 
optimization problem illustrates how predictive intelligence within vRAN can be synergistically 
combined with RIS steering capabilities to reduce network energy consumption without sacrificing 
coverage or user experience.  

This dual focus on scalable control of mechanical RIS and on optimization frameworks that explicitly 
account for prediction accuracy, reconfiguration delays, and steering gains, provides a clear blueprint 
for integrating RIS into the vRAN ecosystem. Such integration not only enhances network efficiency 
but also unlocks new opportunities for proactive, context-aware resource management, ultimately 
transforming vRAN into a more intelligent, flexible, and sustainable control plane capable of 
harnessing RIS as an integral component of next-generation 6G architectures. 
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