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Abstract 
This deliverable explores the algorithmic challenges and performance limits of dynamic 
reconfiguration in virtualized Radio Access Networks (vRAN) for B5G systems. By integrating realistic, 
mobility-driven traffic profiles into the analysis, it evaluates how spatial and temporal reconfiguration 
strategies can optimize throughput and energy efficiency under varying user demands. The study 
also considers the interplay between vRAN, UAV-assisted access, and Reconfigurable Intelligent 
Surfaces (RIS), highlighting the benefits of coordinated, mobility-aware orchestration. The results 
provide key insights into the potential of predictive and adaptive network management, laying the 
groundwork for intelligent, flexible, and energy-efficient B5G infrastructures. 
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Resumen Ejecutivo 
Este Entregable analiza los retos algorítmicos y los límites de rendimiento de la virtualización en las 
redes de acceso radio (vRAN) en el contexto de las redes B5G, centrándose específicamente en las 
ventajas y limitaciones de la reconfiguración dinámica. Las vRAN están transformando el panorama 
de las telecomunicaciones al desacoplar las funciones de red del hardware dedicado, lo que permite 
una flexibilidad sin precedentes para soportar una amplia gama de servicios y aplicaciones, desde la 
automatización industrial con requisitos de latencia ultrabaja hasta las ciudades inteligentes 
impulsadas por IoT. Sin embargo, esta flexibilidad también introduce nuevos desafíos, como la 
gestión de patrones de tráfico altamente variables y de usuarios distribuidos espacialmente. 

Basándonos en nuestro trabajo previo sobre modelización de la movilidad y generación de datos 
sintéticos, integramos perfiles de demanda realistas basados en la movilidad en el estudio de las 
estrategias de reconfiguración de vRAN. Al capturar los patrones espacio-temporales de 
conectividad de los usuarios, podemos evaluar cómo optimizar la reconfiguración de la red, tanto a 
nivel espacial (ajustes por celda) como temporal (asignación dinámica de recursos), con el objetivo 
de mejorar el rendimiento y la eficiencia energética. Esta aproximación permite realizar evaluaciones 
más precisas de los límites operativos de la gestión dinámica de vRAN y resalta el potencial de 
mecanismos de orquestación predictivos sensibles a la movilidad. 

En el contexto más amplio de la orquestación B5G, este trabajo se alinea también con los paradigmas 
emergentes que combinan vRAN con puntos de acceso asistidos por UAV y superficies inteligentes 
reconfigurables (RIS). Los UAV permiten extender la cobertura bajo demanda en áreas críticas, 
mientras que las RIS pueden modificar de manera dinámica el entorno de propagación inalámbrica, 
complementando las capacidades de virtualización de vRAN. La integración de estrategias de 
reconfiguración informadas por movilidad con despliegues asistidos por UAV y RIS posibilita un 
funcionamiento de la red más adaptable y energéticamente eficiente, especialmente en escenarios 
caracterizados por cambios rápidos en la distribución de usuarios o en la demanda de servicios. 

Al cuantificar los límites de rendimiento de la reconfiguración dinámica de vRAN y demostrar su 
interacción con modelos de movilidad realistas, este informe sienta las bases para marcos de 
coordinación que integren vRAN, UAV y RIS. Este enfoque representa un paso fundamental hacia 
infraestructuras B5G inteligentes, sostenibles y altamente adaptables, capaces de satisfacer los 
exigentes requisitos de los servicios de próxima generación. 
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Executive Summary 
This deliverable investigates the algorithmic challenges and performance limits of virtualization in 
Radio Access Networks (vRAN) within the context of B5G networks, focusing specifically on the 
benefits and constraints of dynamic reconfiguration. As vRAN continues to reshape the 
telecommunications landscape by decoupling network functions from dedicated hardware, it 
provides unprecedented flexibility for supporting a diverse range of services and applications—from 
ultra-low-latency industrial automation to IoT-driven smart cities. However, this flexibility also 
introduces complexity in managing highly variable traffic patterns and spatially distributed users. 

Building upon our prior work on mobility modeling and synthetic data generation, we integrate 
realistic, mobility-driven demand profiles into the study of vRAN reconfiguration strategies. By 
capturing spatiotemporal patterns of user connectivity, we can evaluate how network 
reconfiguration—both spatial (cell-level adjustments) and temporal (time-dependent resource 
allocation)—can be optimized to improve throughput and energy efficiency. These insights enable a 
more accurate assessment of the operational boundaries of dynamic vRAN management and 
highlight the potential for predictive, mobility-aware orchestration mechanisms. 

In the broader context of B5G orchestration, this work also aligns with emerging paradigms that 
combine vRAN with UAV-assisted access points and Reconfigurable Intelligent Surfaces (RIS). UAVs 
can provide on-demand coverage extensions, while RIS can dynamically reshape the wireless 
propagation environment, both of which complement vRAN’s virtualization capabilities. The 
integration of mobility-aware reconfiguration strategies with UAV- and RIS-assisted deployments 
can unlock highly adaptive, energy-efficient network operation, particularly in scenarios with rapidly 
changing user distributions or service demands. 

By quantifying the performance limits of vRAN reconfiguration and demonstrating its interplay with 
mobility-driven insights, this deliverable provides a foundation for coordinated orchestration 
frameworks that unify vRAN, UAV-based access, and RIS-enabled coverage enhancements. This 
approach represents a critical step toward achieving intelligent, sustainable, and highly adaptive B5G 
network infrastructures capable of meeting the stringent demands of next-generation services. 
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1. Introduction 
This deliverable aims to study the algorithmic challenges and state-of-the-art solutions for the 
virtualization of Radio Access Networks (vRAN) in B5G networks. More specifically, we perform a 
literature review on relevant scientific work addressing different aspects of vRAN implementations in 
various applications. This analysis delves into key areas such as the optimization of network 
resources, the enhancement of network flexibility, innovations in network architecture, advanced and 
functional network slicing, improvements in interoperability, and the development of energy-
efficient protocols. 

This study is motivated by the significant transformation the telecommunication industry has 
witnessed, driven by the rapid evolution of wireless services and the rising demand for flexible and 
scalable communication infrastructures. At the forefront of this transformation is the emerging trend 
of virtualizing wireless networks. By decoupling network services from the underlying physical 
infrastructure, vRAN introduces an unprecedented level of flexibility and programmability, enabling 
more dynamic and efficient use of network resources. 

As virtualization technology continues to evolve, its principles are increasingly applied to wireless 
network infrastructures, leading to the concept of vRAN. This paradigm shift allows service providers 
to instantiate virtual networks tailored to specific services or customer requirements, all on a shared 
physical infrastructure. Such capabilities are crucial in the 5G and B5G era, where a diverse set of 
applications—including high-definition video streaming, autonomous vehicles, smart cities, and the 
Internet of Things (IoT)—demand highly agile, adaptable, and performance-aware network 
architectures. 

Building on the insights gained from our previous work on mobility modeling and synthetic data 
generation, this deliverable leverages a deeper understanding of how users move and interact with 
the wireless network to better assess the limits of reconfiguration gains in vRAN. Accurate modeling 
of device mobility enables more realistic evaluation scenarios, where spatial and temporal variations 
in user demand are explicitly captured. This allows us to analyze how dynamic reconfiguration—such 
as adjusting cell configurations or reallocating resources in real time—can be informed by user 
mobility patterns, improving both throughput and energy efficiency. By incorporating mobility-aware 
demand forecasting, we can better quantify the performance boundaries of vRAN reconfiguration 
strategies and identify scenarios where mobility-driven adjustments lead to the most significant 
benefits. 

In this way, the lessons learned from mobility modeling not only enhance the realism of our 
evaluation but also provide a foundation for exploring how predictive, mobility-aware algorithms 
could be integrated into vRAN orchestration frameworks. Ultimately, this synergy allows us to 
connect user behavior, network virtualization, and dynamic reconfiguration, advancing the design of 
highly adaptive and resource-efficient B5G networks. 
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2. Related Work 
Mobile networks are integral to providing constant connectivity, not only for individual users but 
also for a wide array of services, devices, and sensors, making them essential in both daily life and 
business operations. These networks rely on a highly complex support infrastructure that includes 
thousands of access cells, each of which requires careful configuration and ongoing maintenance by 
network operators. This complexity results in significant operational costs and a heavy management 
burden. The behavior of each individual cell is influenced by neighboring cells and ever-changing 
network conditions, including the number of connected users, traffic types, and mobility patterns. 
These factors contribute to an increasingly dynamic and challenging network environment as the 
demand for new services grows and new technologies are integrated [SMM2020]. 

In the context of RAN and vRAN, this complexity is further magnified. As networks evolve to meet 
the demands of modern connectivity, operators are tasked with optimizing infrastructure usage while 
managing operational challenges [AH2015]. The complexity of managing these networks is expected 
to increase, especially as operators must deliver enhanced services with fewer financial gains. The 
need to optimize resource allocation in this context is more critical than ever [YDA2020]. 

Network slicing has emerged as a promising solution, offering greater agility by enabling networks 
to dynamically adapt to fluctuations in traffic loads and service demands. This evolution, supported 
by studies demonstrating the benefits of network adaptability through real-world data, allows for 
better utilization of network resources. However, this flexibility also introduces added complexity in 
network management. As part of this broader effort to optimize network performance, our research 
examines how more frequent network configuration updates could improve efficiency, particularly 
in resource allocation and management [MGF2018]. 

In this study, we focus on the optimization of network configurations, particularly analyzing the 
impact of more frequent reconfigurations on downlink traffic performance—a key metric for network 
operators. By leveraging real-world data, we explore various configuration patterns and scales, 
evaluating the trade-offs between increased adaptability and the associated management overhead. 
Our goal is to find a balance that maximizes performance while minimizing complexity, aligning with 
broader industry trends toward smarter, more efficient network resource allocation in RAN and vRAN 
environments. 

Several studies have explored optimizing the configuration of mobile access networks, using a variety 
of objectives and methodologies. For instance, [MAG2020] analyzes real network traces to identify 
anomalies and suggests mitigation strategies through the reconfiguration of cell clusters. Similarly, 
another study explores the use of neural networks to predict network behavior based on its 
configuration. While this work considers transmitted traffic as an environmental variable, our study 
focuses on downlink traffic as the primary Key Performance Indicator (KPI), as defined by the network 
operator. 

Another relevant approach [VSP2023] investigates the use of Digital Twins to test configurations in 
RANs and train reinforcement learning models. However, the solution is only tested on a small 
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network, consisting of five nodes, limiting its applicability to larger and more complex RAN 
environments. Additionally, another [PJW2024] study presents a machine learning framework for 
optimizing configuration parameters of cells in mobile access networks, targeting Signal to 
Interference and Noise Ratio (SINR) as the KPI. However, this work only optimizes two configuration 
parameters. 

In contrast, [AFI2018] propose a machine learning-based solution aims at maximizing cell coverage 
while minimizing interference, though it does not account for traffic or user activity in the 
optimization process. Meanwhile, another study employs a support vector machine (SVM) approach 
to maximize user throughput in RANs, although the reference scenario for their results is not 
specified. Similarly, another study investigates load balancing optimization in 5G networks through 
the configuration of cell parameters, though it is tested on a synthetic network. 

Lastly, another study addresses [HN2015] the parameter optimization problem from the end-user 
perspective, using Quality of Experience (QoE) as the objective function. This solution is tested via 
simulations on a 19-cell reference network. 

Overall, the existing literature provides various methodologies for optimizing cell configuration 
parameters, targeting different objectives such as coverage, SINR, load balancing, and user 
throughput. However, to the best of our knowledge, this work represents the first case of optimizing 
RAN configurations directly involving a real network operator, using real-world data and operational 
insights. Our findings demonstrate potential increases in network traffic capacity of over 30%, 
offering valuable insights into which configuration changes provide the greatest improvements in 
network performance. 
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3. Network Overview 
In this section, we examine the access network architecture of one of Brazil's largest mobile 
network operators, providing valuable insights into the resource allocation challenges inherent in 
modern mobile networks, particularly in the context of LTE and 5G readiness. This network, 
composed of 1,553 cells across multiple municipalities (Itaguaí, São Gonçalo, and Petrópolis), 
presents a complex scenario with varying bandwidth configurations to meet fluctuating service 
demands across urban and suburban areas. Such variability highlights the critical need for 
optimized resource allocation strategies, especially as operators prepare for the transition to vRAN 
and enhanced network slicing in 5G. 

 
FIGURE 1: LOCATION OF THE CELLS IN THE CONSIDERED NETWORK (TOP), AND IN THE ITAGUAI 

MUNICIPALITY IN DETAIL (BOTTOM). 

 

The network operates over four distinct frequency bands: 700 MHz (Low Band), 1.8 GHz and 2.1 
GHz (Mid Band), and 2.6 GHz (High Band). The heterogeneous nature of these deployments, with 
each node using a unique combination of frequencies, demonstrates the need for advanced 
optimization techniques. This distribution of frequencies across cells, where over 42% utilize three 
bands and the remainder employ a varying mix of one to four frequencies, underscores the 
complexity of network resource management. Ensuring efficient use of these frequency resources 
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requires dynamic and intelligent allocation systems, particularly as mobile networks evolve towards 
virtualization through vRAN. 

The key performance indicator (KPI) used to assess the efficiency of network configurations is the 
Downlink Traffic (DL) Volume, a metric prioritized by the network operator due to its direct impact 
on user experience and network performance. This focus aligns with broader industry trends that 
emphasize traffic-based resource allocation and performance optimization in RAN and vRAN 
deployments. Addressing missing or faulty KPI measurements—an issue affecting around 20% of 
the data—remains a challenge, emphasizing the importance of real-time, fault-tolerant resource 
management algorithms in ensuring robust service delivery. 

3.1. Network Configuration Optimization 
Within this heterogeneous network, cell configurations are selected from a predefined set of 
parameters based on performance data and vendor recommendations. These configurations are 
crucial in determining how the network manages its resources, particularly in scenarios involving 
inter-frequency handovers and traffic redistribution across cells. The balance between traffic load 
and signal quality is critical for ensuring optimal network performance and minimizing energy 
consumption, two key concerns in the evolution of RAN into vRAN architectures. 

The parameters guiding these configurations—such as Cellreselpriority, QRxLevMin, and 
SNonIntraSearch—play a significant role in determining how user equipment (UE) interacts with the 
network. These parameters control when UEs should switch between frequencies or cells based on 
signal strength and network load, ensuring seamless transitions and balanced resource allocation. 
This process of adjusting configurations in response to dynamic network conditions mirrors the 
emerging strategies in vRAN, where intelligent resource orchestration must be flexible enough to 
optimize both user experience and operational efficiency. 

The network’s reliance on predefined configurations, while practical, also limits its flexibility and 
scalability. Increasing the granularity of these configurations, particularly in problem areas, 
introduces significant management overhead. However, modern vRAN systems are moving towards 
more sophisticated, automated configuration management through machine learning and predictive 
analytics, reducing the need for manual adjustments and trial-and-error approaches. 

An example of this configuration management process can be seen in Figure 2, where inter-
frequency handovers are regulated within a node using parameters like SNonIntraSearch. In such 
scenarios, advanced algorithms could further optimize the thresholds and signal measurements to 
ensure a more dynamic and energy-efficient handover process. As vRAN deployments become more 
common, the ability to fine-tune these parameters in real-time without excessive overhead will be 
critical for achieving the energy efficiency and scalability required by future 5G networks. 
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FIGURE 2: EXAMPLE OF NETWORK CONFIGURATION. 
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4. Baseline Network Performance 
This section provides an overview of the baseline performance of the network using the operator's 
default configuration, referred to as configuration 0. Configuration 0 is widely considered the most 
effective in terms of maximizing downlink (DL) traffic, the primary Key Performance Indicator (KPI) 
used by the operator to assess network throughput. By analyzing the baseline configuration, we can 
better understand how it performs under typical conditions and use this as a benchmark for 
evaluating alternative network configurations and their impact on performance. 

4.1. Downlink Traffic Analysis 
To begin the analysis, we examine the hourly DL traffic over the course of a typical week, as shown 
in Figure 3. The results illustrate the dynamic nature of network traffic, with an average DL traffic 
volume of approximately 3.4 billion KB per hour. During peak periods, traffic spikes to as much as 
5.7 billion KB, while it drops to a minimum of 0.6 billion KB during off-peak hours. This variability 
highlights the importance of optimizing resource allocation in real-time, as traffic loads fluctuate 
significantly throughout the day. 

 

FIGURE 3: HOURLY TRAFFIC ACROSS THE ENTIRE NETWORK OVER A WEEK, USING THE BASELINE 
CONFIGURATION. 

The data in Figure 3 reflects typical day-night traffic cycles, with noticeable peaks during midday and 
evening hours. The relatively stable traffic patterns observed during weekends suggest that network 
usage remains high, even as the number of connected users may vary. This consistency underscores 
the necessity of implementing adaptive resource allocation strategies within the RAN and vRAN, 
allowing the network to handle diverse traffic loads while maintaining high performance and energy 
efficiency. 
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FIGURE 4: USERS CONNECTED PER HOUR AND NUMBER OF FREQUENCIES. 

Figure 4 illustrates the number of users connected to antennas with varying numbers of frequency 
bands (from 1 to 4 frequencies) over the course of a week. A clear periodic pattern emerges, with 
noticeable peaks during weekdays (Monday to Friday) and lower numbers on weekends (Saturday 
and Sunday). This suggests that user connectivity is higher on weekdays, likely due to work or school 
activities, while it decreases over the weekend. Each weekday shows a consistent pattern with two 
main peaks, which likely correspond to high-usage times, such as morning and evening commuting 
hours or regular work hours. 

In terms of frequency usage, antennas supporting four frequencies (dark blue) attract the majority 
of users, indicating a preference or necessity for these higher-capacity antennas. Connections to 
four-frequency antennas remain the highest throughout the week, suggesting that these antennas 
are essential for handling most of the network’s demand. In contrast, antennas with only one 
frequency (orange) see the fewest connections, suggesting they serve lower-traffic areas or are less 
optimal for managing high user volumes. Antennas with two and three frequencies (gray and light 
blue) handle moderate levels of traffic, with three-frequency antennas generally supporting more 
users than those with two frequencies. 

The clear separation in user numbers across antennas with different frequencies suggests a tiered 
network structure. High-frequency antennas are likely positioned in areas with greater traffic 
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demand, while antennas with fewer frequencies may be placed in lower-demand areas, efficiently 
matching network resources to user distribution. 

4.2. Peak Hour and Frequency Distribution 
The double peaks observed in the traffic patterns (Figure 3) suggest that different geographical areas 
experience peak usage at distinct times. Residential areas likely see increased traffic in the evening, 
while commercial zones experience their peak during midday. Figure 5 illustrates this distribution of 
peak hours across network nodes, showing that most peak traffic occurs between 12:00 PM and 
midnight. This insight is critical for optimizing resource allocation in both RAN and vRAN 
environments, as it allows operators to anticipate high-traffic periods and adjust resources 
accordingly to ensure service quality during these peak times. 

 

FIGURE 5: DISTRIBUTION OF THE PEAK HOUR FOR THE DIFFERENT NODES IN THE NETWORK. 

The distribution of peak hours further highlights the importance of dynamic scheduling algorithms 
in vRAN systems, which can allocate resources like bandwidth and computing power in near-real-
time, based on fluctuating demand. By managing intelligently managing resources during peak 
hours, operators can prevent network congestion, ensuring smooth user experience and optimized 
energy use. 

4.3. User Traffic Patterns 
Next, we assess the number of users connected to the network over the same period, as shown in 
Figure 6.a. While the number of users decreases on weekends, the overall traffic remains relatively 
stable, suggesting that individual users consume more data during non-working days. This is an 
important consideration for RAN and vRAN optimization strategies, as it highlights the need to 
balance user density with traffic volume when allocating resources. 

In Figure 6.b, the variations in user numbers across different days of the week are presented. These 
fluctuations indicate that certain days, like Tuesdays and Wednesdays, are more stable, offering 
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reliable benchmarks for comparing the performance of different network configurations. Conversely, 
higher variability on Fridays suggests that real-time adjustments may be more necessary on such 
days to maintain network performance and resource efficiency. 

 

FIGURE 6: (A) AVERAGE NUMBER OF CONNECTED USERS PER HOUR DURING THE BASELINE WEEK. (B) 
HOURLY DIFFERENCE BETWEEN THE MAXIMUM AND MINIMUM NUMBER OF CONNECTED USERS, TO 

EVALUATE THE VARIABILITY ACROSS DIFFERENT WEEKS. 

4.4. Optimal Network Configuration 
To further assess the effectiveness of configuration 0, we compare it with alternative configurations 
over two comparable days (Table 1). As expected, configuration 0 achieves the highest total DL traffic, 
but the performance improvement over other configurations is modest, with less than a 4% 
difference in throughput. Nevertheless, configuration 0 remains the optimal choice for static, 
network-wide configuration due to its slightly better performance in managing overall traffic load. 

This analysis demonstrates the importance of fine-tuning network configurations based on traffic 
patterns and user behavior. As networks continue to evolve towards vRAN architectures, the ability 
to implement dynamic, real-time adjustments will become increasingly crucial. While configuration 
0 serves as a solid baseline, future developments in network resource allocation should focus on 
more adaptive and scalable solutions that can respond to the unique demands of modern mobile 
networks. 
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Configuration DL Data [KB] Difference [%] 

0 17.03 ⋅ 10!" 0.0 

1 16.71 ⋅ 10!" −1.89 

2 16.97 ⋅ 10!" −0.36 

3 16.49 ⋅ 10!" −3.25 

TABLE 1: BEST STATIC CONFIGURATION 
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5. Configuration Analysis 
This section evaluates the impact of using different network configurations on resource allocation 
and overall network performance, focusing on how configuration changes influence traffic patterns 
and service quality in the network. In collaboration with the network operator, four distinct 
configurations were applied sequentially over consecutive weeks from August to October 2023. This 
period was chosen to avoid major holidays or network changes, allowing for a controlled 
environment to analyze the effects of each configuration on downlink (DL) traffic, a primary 
performance metric in Radio Access Networks (RANs) and virtualized RAN (vRAN) systems. 

5.1. Temporal Analysis 
The first step in analyzing the effectiveness of each configuration is to examine how traffic fluctuates 
throughout the day and how each configuration responds to these fluctuations. Figure 7.a illustrates 
the total traffic carried by the network for each configuration across the hours of the day. The data 
highlights two key traffic peaks—one around midday and another in the evening—demonstrating 
the dynamic nature of network demand. These peaks emphasize the need for intelligent resource 
allocation strategies in both RAN and vRAN to handle high traffic volumes efficiently. 

Interestingly, the intersection of traffic curves for different configurations suggests that no single 
configuration consistently outperforms the others throughout the day. As seen in Figure 7.b, 
configuration 2 proves to be optimal during most hours, while configurations 1 and 3 show better 
performance during specific times, such as off-peak periods or times when traffic is decreasing. This 
observation aligns with the current trends in vRAN systems, where dynamic and adaptive 
configurations are crucial for optimizing network performance in response to real-time traffic 
conditions. 
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FIGURE 7: A) TOTAL TRAFFIC CARRIED BY THE NETWORK, UNDER THE DIFFERENT CONSIDERED 

CONFIGURATIONS, AND (B) BEST PERFORMING CONFIGURATION BY HOUR. 

Since network traffic fluctuates throughout the day, we need to account how much each hourly-
optimized configuration performs relative to a static configuration. This can be seen in Figure 8, 
which shows the relative traffic gain when using the optimal configuration for each hour compared 
to configuration 0 (i.e., the best configuration when considering only a single configuration over the 
whole day). In some hours, the gain exceeds 10%, while for most hours, if there is any gain, it remains 
below 5%. On average, switching to the optimal configuration each hour results in a 3% traffic 
increase, which is not significant enough to justify the added complexity of dynamic configuration 
changes, as this gain is like the difference between the best and worst static configurations for the 
network. 
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FIGURE 8: TRAFFIC GAIN BY HOUR, WHEN USING THE BEST (AND SECOND BEST) 

CONFIGURATION FOR EACH HOUR, WITH RESPECT TO USING ALWAYS THE CONFIGURATION 0. 

5.2. Spatial Analysis 
We now analyze the spatial scale of reconfiguration. It might seem reasonable to assume that the 
network conditions are similar considering close areas, and, as such, that the same configuration 
would work for nearby cells.  

To investigate this, we randomly selected a set of cells close to each other, though connected 
different nodes. We then analyzed the optimal configuration for each cell, allowing reconfigurations 
each 6 hours. We consistently found that the best configuration differed from cell to cell, as shown 
in Figure 9, where each color represents a different optimal configuration for a cell over 6-hour 
periods throughout the reference day. Moreover, the distribution of the best configurations for 
randomly selected cells is mostly uniform; in other words, there are roughly the same number of cells 
where each configuration is the optimal one, meaning that no single configuration consistently 
outperforms the others across nearby cells. This suggests that allowing different configurations for 
different geographical areas allows the network to reach a higher gain in terms of carried traffic. 
When selecting the best configuration for each one of the 3 municipalities, a traffic increase of 1% is 
observed, while when selecting the best configuration for each neighborhood, the gain rises to 8.8%, 
10.6% for node, reaching 17.5% when selecting the best configuration for each cell. This shows that 
there is considerable potential when allowing different configurations for different areas of the 
network, and that the smaller the area, the higher the gain. 
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FIGURE 9: BEST CONFIGURATION FOR DIFFERENT NEIGHBOUR CELLS, ON THE REFERENCE DAY 

(BLUE: CONF0, RED: CONF1, GREEN: CONF2, AND YELLOW: CONF3) 

5.3. Frequency Analysis 
This figure illustrates the Downlink (DL) Traffic Gain percentage associated with antennas operating 
with different numbers of frequency bands, ranging from 1 to 4 frequencies. Each bar in the figure 
represents the average traffic gain achieved by antennas with a specific number of frequencies, while 
the error bars indicate the variability or range within which these gains are observed. 

The traffic gain tends to be highest for antennas with only 1 frequency, reaching approximately 20% 
or more on average, with significant variability, as indicated by the large error bars. Antennas with 2 
frequencies show a slightly lower average traffic gain than those with only 1 frequency, but they still 
achieve a notable increase in DL traffic, with some degree of variability. As the number of frequencies 
increases to 3 and 4, the traffic gain percentage continues to decrease. Antennas with 4 frequencies 
show the lowest traffic gain, around 10% or less, with a relatively smaller range of variability. 

 
FIGURE 10: TRAFFIC GAINS AS A FUNCTION OF THE NUMBER OF FREQUENCIES. 
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This trend suggests that antennas with fewer frequency bands, such as those with 1 or 2 frequencies, 
experience higher relative gains in DL traffic. This may indicate that lower-frequency antennas are 
more sensitive to flexible configuration changes, possibly because they are in areas with lower 
baseline traffic demand. Adjustments in configuration for these antennas result in more substantial 
gains relative to their normal traffic levels. In contrast, antennas with more frequencies, such as those 
with 3 or 4, may already be handling high traffic volumes, so their relative traffic gains from 
configuration adjustments are smaller. These higher-frequency antennas may be positioned in high-
demand areas where the impact of configuration changes is less pronounced compared to the total 
traffic handled. 

The error bars reveal wide variability in traffic gains for antennas with 1 and 2 frequencies, suggesting 
that these gains are less consistent and could be influenced by specific contextual factors such as 
location, time, or network demand. For antennas with 3 or 4 frequencies, the gains are more stable, 
as shown by the smaller error bars, indicating that traffic increases are more predictable but relatively 
lower. 

5.4. Spatio-temporal Analysis 

Now, we evaluate the potential gain in traffic achieved by dynamically adjusting the configuration 
for both different spatial and temporal scales, being aware that such reconfigurations increase 
system complexity and management costs. To this extent, we admit, for each dimension of the 
analysis, different values of the corresponding granularity, and then analyze all the possible 
intersections, corresponding to different trade-offs. For the time scale, we consider configuration 
changes that may happen every 1, 2, 4, 8, 12, or 24 hours. On the other hand, for the spatial scale, 
we consider configurations that may change for each cell, node, neighborhood, municipality, or that 
must be the same over the whole region. For each point considered in the resulting matrix, we 
consistently select the optimal configuration (i.e., the one resulting in the highest traffic) for the 
chosen time and spatial resolution over the study period. The results are presented in Figure 10 which 
shows the average percentage of traffic gain when selecting the optimal configuration at each spatio-
temporal granularity. Each curve represents a different spatial resolution, with the x-axis indicating 
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the time granularity and the y-axis showing the percentage of traffic gain for the corresponding 
setting. 

 

FIGURE 11: AVERAGE PERCENTAGE OF TRAFFIC INCREASE, ALLOWING CONFIGURATION CHANGES 

WITH DIFFERENT TIME GRANULARITIES (THE X-VALUE INDICATES THE MINIMUM INTERVAL 

OVER WHICH A CONFIGURATION CANNOT CHANGE), AND AT DIFFERENT GEOGRAPHICAL 

SCALES (DIFFERENT CURVES). 

The simplest scenario is when a single configuration is applied across the entire network, and it is 
not allowed to change over the 24h period. This scenario corresponds to the left point of the bottom 
curve (orange), in Figure 10. Here the gain is marginal (0.5%), as it is only achieved by changing 
configuration once per day, with respect to having a fixed configuration always. Remaining on the 
same curve, but moving right, we consider scenarios in which a configuration is selected for the 
whole region, but it is allowed to change more frequently, up to each hour (i.e., right end of the lower 
curve - orange - also corresponding to the scenario analyzed in Figure 7 and 8). The average gain 
for this scenario is 3.3%. The curve immediately above (light brown) corresponds to the scenario in 
which different configurations can be selected for different municipalities. Here the improvement is 
very marginal, with respect to the regional scenario (i.e., from 1%, allowing a configuration to change 
every 24h, to 4.9% allowing a configuration change per hour), as each area sharing a configuration 
(i.e., municipality) still includes high heterogeneity. On the other hand, we can see a significant 
improvement when configurations are selected at a neighborhood and eNodeB level (grey and light 
blue curves). When selecting the optimal configuration for the entire day in these scenarios, average 
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performance increases by 8.8% and 10.4%, respectively. These gains rise to approximately 16.1% and 
17.4% when configurations are adjusted hourly. 

Finally, allowing configuration changes at cell level results in substantial throughput improvements 
(dark blue curve). In a less complex scenario, where the configuration is fixed for each cell over 24 
hours (left end of the curve), we observe a 17.5% traffic gain. In the most dynamic scenario, with 
hourly adjustments at the cell level (right end of the curve), traffic volume increases by 30.7%. 

As expected, both increases in flexibility (i.e., in time and in space) result in significant performance 
increases for the network. At the same time, allowing for different configurations in different 
neighborhoods, and for different cells, increases the network performance much more than changing 
the configuration more often. Finally, the gain brought by the time granularity (i.e., the increase in 
the same curve going from left - 24h - to right - 1h) increases a lot when enabling higher spatial 
granularity, passing from about 3%, when allowing region-level granularity, to almost 15%, when 
allowing cell-level granularity. The same is also true the other way around: the gain brought by space 
granularity (i.e., different curves for the same x-value) increases then enabling higher temporal 
granularity, passing from about 17%, when allowing 24h time granularity, to about 30%, when 
allowing 1h time granularity. This means that not only does each dimension of configuration 
flexibility increase the network performance, but also that each one helps the other to increase even 
more the network performance (i.e., the two contributions do not sum up linearly, but more than 
linearly). This study highlights the importance of flexible cell configurations in mobile networks, 
particularly in virtualized Radio Access Networks (vRAN), where dynamic resource management is 
essential. By allowing temporal and spatial adjustments to configurations, networks can handle 
significantly more traffic—up to 30% more with per-cell flexibility—while optimizing resource 
allocation. Spatial flexibility, especially at finer geographic scales, proves to be the most effective for 
improving network performance. 
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6. Reconfiguration Problem 
To tackle the problem of finding an equilibrium between reconfiguration costs at various 
spatiotemporal scales and the resulting traffic gains, we can define a function that balances these 
two aspects. This function will weigh the cost of reconfiguring at different spatial scales (e.g., 
neighborhoods, nodes, regions) and temporal scales (e.g., every hour, every minute) against the 
traffic gains achieved. 

To define the problem mathematically, let’s consider the following variables and objective: 

1. 𝑮_𝒔: The traffic gain (in percentage) achieved by reconfiguring at spatiotemporal scale 𝑠. 

2. 𝑪_𝒔: The cost of reconfiguration at spatiotemporal scale 𝑠. 

3. 𝒘𝒔: The weight or priority assigned to spatiotemporal scale 𝑠 based on its importance. 

4. 𝜶: The importance given to the gain with respect to the cost. 

5. 𝒙𝒔: A binary decision variable, where: 

o 𝑥" = 1 if reconfiguration at scale 𝑠 is selected, 

o 𝑥" = 0 otherwise. 

We want to maximize the net benefit, which is the weighted sum of traffic gains minus the 
reconfiguration costs across all scales. This can be expressed as: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒	4𝑥"(𝛼𝑤"	 ∙ 𝐺" − (1 − 𝛼)𝐶")
"

	 

Constraints:  

1. Non-negativity: All gains and costs are non-negative: 

𝐺" ≥ 0, 𝐶" ≥ 0, ∀𝑠 

2. Budget constraint: If there is a total budget 𝐵 for reconfiguration, we may impose the 
following constraint: 

4𝑥" ∙ 𝐶" ≤ 𝐵
"
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The optimization problem can then be formally defined as: 

                  𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒	 ∑ 𝑥"(𝑤"	 ∙ 𝐺" − 𝐶")"  

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	 ∑ 𝑥" ∙ 𝐶" ≤ 𝐵"  

𝐺" ≥ 0, 𝐶" ≥ 0, ∀𝑠 

𝑥" ∈ {0, 1}, ∀𝑠 

 

6.1. Modelling the Cost as a function of Scale and Frequency 

While it is straightforward to define traffic gains, as analyzed in the previous section, defining 
reconfiguration costs requires a more detailed breakdown. Costs can be categorized into direct 
operational costs, such as power consumption, equipment wear, and personnel or automation 
expenses, which increase with frequent reconfigurations. Additionally, network performance and 
quality impacts, such as latency spikes or service interruptions during transitions, contribute to costs 
by affecting customer experience and SLAs. There is also a revenue opportunity cost, where 
reconfiguration may temporarily reduce traffic capacity, leading to potential revenue loss, especially 
during peak times. Finally, a data-driven approach, using historical data on past reconfigurations (like 
energy consumption spikes or maintenance needs), can help estimate typical costs across different 
scales, providing a more realistic picture of reconfiguration expenses. 

We define the cost 𝐶" at scale 𝑠 as: 

𝐶" = 𝛼𝐸" + 𝛽𝑇" + 𝛾𝑅" 

• 𝐸" : Energy cost at scale 𝑠 (e.g., based on power usage). 
• 𝑇": Transition disruption cost, representing performance degradation or quality impact. 
• 𝑅": Revenue opportunity cost, estimating lost traffic or potential revenue. 

 
Here’s a hypothetical breakdown for a reconfiguration cost at a neighbourhood-hour scale: 

• Energy Cost: If reconfiguration at this scale increases energy consumption by 5 kWh and 
electricity costs 0.10$ per kWh, then: 

 
𝐸" = 5	𝑘𝑊ℎ × 0.10	𝑈𝑆𝐷/𝑘𝑊ℎ = 0.5	𝑈𝑆𝐷 

 
• Transition Disruption Cost: If service degradation leads to a 1% increase in latency com-

plaints or SLA penalties, and each complaint/penalty costs 2$: 
 

𝑇" = 0.01 × total users affected × 2	$ 
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• Revenue Opportunity Cost: If reconfiguration interrupts 2 minutes of peak-hour traffic and 
leads to an estimated 0.1 TB of lost data transfer, with each TB generating 50$ in revenue: 
 

𝑅" = 0.1	𝑇𝐵 × 50	𝑈𝑆𝐷/𝑇𝐵 = 5	𝑈𝑆𝐷 
 
Then, combining these: 

𝐶" = 𝛼 ⋅ 0.5 + 𝛽 ⋅ 𝑇" + 𝛾 ⋅ 5 
 
Where 𝛼, 𝛽,	and	𝛾 needs to be adjusted to reflect the relative importance of each cost component. 
 

Interval 
(Hours) 

Cell eNodeB Neighborhood Municipality Region 

1 966909.15 99677.01 57562.39 1857.67 625.91 
2 483798.56 49872.13 28811.00 928.80 312.94 
4 242133.72 24957.93 14413.36 464.46 156.51 
8 121099.49 12475.50 7204.34 232.21 78.25 
12 81219.28 8364.67 4845.65 154.91 52.22 

TABLE 2: AVERAGE NUMBER OF USERS AFFECTED BY THE RECONFIGURATIONS AT EACH SCALE. 

 

We conducted a hyperparameter optimization to determine the optimal configuration of network 
reconfiguration parameters for various budget and preference settings. Our goal was to identify the 
best trade-offs between maximizing traffic gain and minimizing user disruptions across different 
combinations of budget constraints and alpha values (which control the balance between prioritizing 
traffic gain and minimizing disruptions). We varied the budget, which represents the total allowable 
number of users impacted by reconfigurations, across multiple values (e.g., 50,000, 100,000, 150,000 
users) and explored a range of alpha values (0 to 1), where alpha = 0 focused solely on minimizing 
user disruptions, and alpha = 1 prioritized traffic gain. For each combination of budget and alpha, 
we normalized the traffic gains and user impacts to make them comparable and set up an 
optimization problem using PuLP to maximize a custom net benefit function that incorporated both 
traffic gains and disruptions based on the selected alpha. We solved this optimization for each 
(budget, alpha) pair to find the optimal configuration of time intervals (H) and spatial scales (e.g., 
Cell, eNodeB) for network reconfigurations. After obtaining the optimal configurations, we visualized 
the results as a matrix plot, where each cell in the matrix represents an optimal configuration for a 
specific (budget, alpha) pair. The color of each cell corresponds to the time interval (ranging from 
red for 1-hour intervals to blue for 24-hour intervals), while the label within each cell displays the 
configuration’s time interval, spatial scale, and resulting traffic gain. 

This matrix plot in Figure 12 provides insights into the optimal network reconfiguration 
configurations for various combinations of budget and importance weight (alpha). Each cell 
represents the optimal configuration in terms of time interval (H) and spatial scale (e.g., Region, 
Municipality, Neighborhood, Cell) for a given budget and alpha. The color of each cell reflects the 
time interval (ranging from red for 1-hour intervals to blue for 24-hour intervals), and the label inside 
each cell shows the configuration in [H, Scale] format. 
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One of the primary observations is the influence of alpha (importance weight) on configuration 
selection. At low alpha values (e.g., 0.01, 0.1), where minimizing disruptions (user impact) is prioritized 
over maximizing traffic gain, the optimal configurations tend toward longer intervals (e.g., 24 hours) 
and larger spatial scales (e.g., Region or Municipality). These configurations affect fewer users 
because they require fewer reconfigurations over a broader area, aligning with the objective to 
minimize disruptions. However, as alpha increases, shifting the focus more towards traffic gain, the 
configurations transition to shorter intervals (e.g., 2-4 hours) and smaller spatial scales (e.g., 
Neighborhood, Cell). This shift allows for more granular and frequent adjustments, enhancing the 
network's adaptability and potential for traffic gain, albeit with a higher impact on user experience. 

 

 
FIGURE 12: OPTIMAL CONFIGURATION AS A FUNCTION OF THE BUDGET AND THE IMPORTANCE TO GAIN 

AND BUDGET. 

The budget also has a significant impact on configuration choices. With very low budgets (e.g., 100), 
the configurations remain at 24-hour intervals at larger spatial scales (Municipality or Region), 
regardless of alpha. This constraint indicates that with limited resources, the network can only afford 
minimal reconfigurations to avoid impacting too many users. As the budget increases (e.g., to 500 
or more), there is a clear shift toward shorter time intervals (e.g., 4 hours, 2 hours) at larger alphas, 
suggesting that, given sufficient budget, the network can afford more frequent reconfigurations to 
optimize traffic gains while managing user impact. 

For intermediate budget levels (e.g., 1000 to 10000), we observe mixed configurations that balance 
both moderate time intervals (e.g., 4-12 hours) and intermediate spatial scales (e.g., Municipality, 
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Neighbourhood). This suggests that these configurations are optimal for balancing traffic gains and 
disruptions within reasonable budget constraints. At higher alpha values and higher budgets, 
configurations increasingly favour frequent reconfigurations (e.g., 2-hour intervals) at finer spatial 
scales (e.g., Neighbourhood or Cell). This configuration is ideal for maximizing network 
responsiveness and traffic handling capacity, suitable for scenarios where traffic gain is the main 
priority. 

A preference for larger scales emerges when alpha is low, with optimal configurations favoring larger 
spatial scales like Region or Municipality, especially when the budget is limited. This suggests that 
when user disruption is prioritized, reconfiguring larger areas less frequently is more efficient in 
reducing the impact on individual users. 
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7. Summary and Conclusions 
The configuration of cells in mobile access networks is a critical aspect for network operators, not 
only impacting network performance but also directly influencing operational and management 
costs. As mobile networks evolve towards more complex architectures such as virtualized Radio 
Access Networks (vRAN), the ability to dynamically and efficiently configure cells takes on even 
greater significance. In vRAN environments, where virtualized instances of network functions must 
be managed in real-time, the flexibility of network configuration becomes a crucial tool for 
optimizing resource allocation, ensuring performance isolation, and maintaining service quality. 

In this study, we first investigated how selecting different cell configurations affects a network's 
primary Key Performance Indicator (KPI), specifically the volume of downlink (DL) traffic carried by 
the network. Our results show that while static configurations provide a solid foundation, significant 
traffic gains can be achieved by introducing flexibility in the configuration process. We analyzed two 
types of flexibility: temporal (adjusting configurations at different times of the day) and spatial 
(applying different configurations across regions, municipalities, neighborhoods, or cells). The 
findings reveal that both temporal and spatial flexibility lead to higher carried traffic, but spatial 
flexibility is far more effective, especially at finer geographic scales. 

Allowing different configurations for distinct neighborhoods led to traffic gains of over 15%, while 
enabling per-cell configuration adjustments resulted in increases of over 30%. These results 
underscore the importance of granular control over network configurations, particularly in vRAN 
systems where the precise allocation of resources can significantly enhance overall network 
performance and efficiency. 

In the context of vRAN, where virtualized network functions are dynamically managed and resources 
can be reallocated on-demand, these findings are particularly relevant. The ability to adapt 
configurations at the cell level not only improves traffic handling but also aligns with the core 
objectives of vRAN: improving scalability, resource efficiency, and performance isolation. The 
potential to increase carried traffic by over 30% through per-cell configuration flexibility is a 
testament to how vRAN’s architectural capabilities can be leveraged for superior network 
optimization. Moreover, this flexibility allows operators to respond to fluctuating traffic demands in 
real-time, ensuring optimal use of computational and network resources while reducing the risk of 
bottlenecks or inefficiencies. 

Looking ahead, future work should focus on deepening our understanding of the correlation 
between network conditions and the optimal configuration for those conditions. This could involve 
developing predictive models that use real-time data to anticipate traffic patterns and adjust 
configurations dynamically, further enhancing the efficiency of resource allocation in vRAN systems. 
Additionally, it will be important to evaluate how different configuration strategies affect other KPIs, 
such as fairness in traffic distribution across frequency bands and the rate of user drops. By expanding 
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the scope of the analysis to include multiple performance metrics, we can better assess the holistic 
impact of configuration strategies on network performance and user experience. 

In conclusion, this deliverable highlights the critical role that flexible network configuration plays in 
optimizing performance, particularly in the evolving landscape of vRAN. As operators continue to 
transition to virtualized architecture, the ability to adapt configurations both temporally and spatially 
will be key to maintaining high service quality, improving traffic management, and reducing 
operational costs. These results provide a strong foundation for future work in developing more 
adaptive, real-time configuration systems that can fully harness the potential of vRAN to meet the 
growing demands of modern mobile networks. 
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