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Abstract 
This deliverable presents the design and evaluation of a set of original algorithms for cost-
aware and reliable autoscaling in vRAN infrastructures. Based on queueing models and a 
detailed characterization of both operational and capital expenditures, an optimization 
framework is developed to meet strict reliability targets while minimizing total cost. 
Simulations using real server profiles show that the proposed solution achieves up to 22% 
cost savings compared to classical methods, reaching near-optimal results with low 
computational complexity. This work provides a solid foundation for the development of self-
optimizing and energy-efficient B5G/6G networks.   
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Resumen Ejecutivo 
Este entregable se basa en nuestro análisis previo del estado del arte en la asignación de recursos y 
el diseño de vRAN con conciencia energética, donde identificamos limitaciones clave en los enfoques 
actuales para lograr garantías de fiabilidad, eficiencia de costes y escalado automático dinámico en 
infraestructuras virtualizadas. En esta nueva fase del trabajo, pasamos del análisis al desarrollo 
original de algoritmos, presentando un marco de optimización específicamente diseñado para el 
escalado automático fiable y consciente de costes de granjas de servidores vRAN. 

En el núcleo de este entregable se encuentra un conjunto de algoritmos que hemos diseñado desde 
cero, combinando modelos teóricos de colas con una abstracción detallada de costes que integra 
tanto los gastos de capital (CapEx) como los gastos operativos (OpEx). Estos algoritmos están 
diseñados para cumplir con exigentes objetivos de fiabilidad —como los impuestos por acuerdos de 
nivel de servicio— al mismo tiempo que minimizan el coste total de propiedad. Nuestro enfoque va 
más allá de los métodos heurísticos convencionales o las adaptaciones de técnicas clásicas, 
proponiendo nuevas formulaciones y estrategias de resolución específicamente orientadas a las 
particularidades de los entornos virtualizados de acceso radio. 

Para validar nuestros algoritmos, llevamos a cabo extensas campañas de simulación utilizando 
perfiles reales de servidores y patrones de demanda realistas. Los resultados muestran que nuestra 
solución logra hasta un 22 % de reducción de costes en comparación con técnicas clásicas de 
escalado automático basadas en teoría de colas. Además, nuestros algoritmos alcanzan un 
rendimiento a menos del 3 % de las soluciones obtenidas por búsqueda exhaustiva, pero con una 
complejidad computacional muy inferior, demostrando así un sólido equilibrio entre optimalidad y 
escalabilidad. 

Mediante la introducción de estos nuevos algoritmos y su validación bajo condiciones realistas, este 
entregable establece una metodología sistemática para el diseño de infraestructuras vRAN 
energéticamente eficientes, fiables y rentables. Sienta las bases para futuras líneas de investigación, 
incluyendo la integración de planificación de recursos basada en movilidad y predicción de tráfico, 
así como mecanismos de reconfiguración dinámica de red. En última instancia, nuestro trabajo 
contribuye al objetivo más amplio de habilitar arquitecturas de red B5G/6G inteligentes y 
autooptimizables, capaces de adaptarse dinámicamente a la evolución de la demanda de los usuarios 
y las condiciones operativas. 

  



SORUS-RAN-A2.3-E2 (E12) 9 
   

  

Executive Summary 
This deliverable builds upon our previous in-depth analysis of the state of the art in resource 
allocation and energy-aware vRAN design, where we identified key limitations in current approaches 
to achieving reliability guarantees, cost efficiency, and dynamic autoscaling within virtualized 
infrastructures. In this new phase of the work, we shift from analysis to original algorithmic 
development, presenting a novel optimization framework specifically tailored for cost-aware and 
reliable autoscaling of vRAN server farms. 

At the core of this deliverable is a set of algorithms we have designed from the ground up, combining 
queuing-theoretic modeling with a fine-grained cost abstraction that integrates both capital 
expenditures (CapEx) and operational expenditures (OpEx). These algorithms are engineered to meet 
stringent reliability targets—such as those imposed by service-level agreements—while minimizing 
the total cost of ownership. Our approach goes beyond conventional heuristics or adaptations of 
classical methods by proposing new formulations and solution strategies that are purpose-built for 
the unique characteristics of virtualized radio access environments. 

To evaluate our algorithms, we carry out extensive simulation campaigns using real-world server 
profiles and demand patterns. Results show that our solution achieves up to 22% cost 
reductions compared to baseline queueing-based autoscaling techniques. Importantly, our 
algorithms yield performance within 3% of exhaustive search solutions, while operating at a fraction 
of their computational complexity—demonstrating a strong balance between optimality and 
scalability. 

By introducing these new algorithms and validating them under realistic conditions, this deliverable 
establishes a systematic methodology for the design of energy-efficient, cost-effective, and reliable 
vRAN server infrastructures. It lays the groundwork for future research directions, including the 
integration of mobility-aware and traffic-predictive resource planning, as well as real-time network 
reconfiguration mechanisms. Ultimately, our work contributes to the broader goal of enabling 
intelligent, self-optimizing B5G/6G network architectures that can adapt dynamically to evolving user 
demands and operational conditions. 
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1. Introduction 
With the arrival of Network Function Virtualization (NFV) [1], mobile services will be implemented as 
interconnected virtual network functions (VNFs) hosted by cloud servers [2]. To make efficient use of 
resources, these VNFs need to be scaled up and down based on their load [3]. This scaling does not 
impose significant challenges when dealing with traditional best-effort services, and therefore the 
impact of non-zero activation times or the fallibility of servers is negligible. However, when dealing 
with services with stringent reliability requirements—such as Ultra Reliable Low Latency 
Communications (URLLC), which demand reliability levels of up to 5 or 6 nines [4]—these factors 
become critical and cannot be ignored. 

This deliverable builds upon our previous work, where we analyzed the state of the art in resource 
allocation and energy-aware vRAN operation, identifying key gaps in the integration of reliability-
aware autoscaling mechanisms and cost-efficient infrastructure design within virtualized 
environments. In that study, we explored how intelligent resource management strategies, grounded 
in queuing theory and energy-efficiency considerations, could be leveraged to meet the demanding 
requirements of B5G networks. This foundational analysis established the need for algorithmic 
approaches capable of jointly optimizing server activation policies, energy consumption, and cost 
models while maintaining strict service reliability guarantees. 

In our earlier contributions [5], [6], we specifically examined the non-negligible impact of non-zero 
server start-up times and finite server lifetimes on the reliability of services provided by auto-scaling 
server farms. Initially, we considered a fixed scenario with a given server farm and developed an 
analytical model to optimize its activation and deactivation thresholds [5]. Subsequently, we 
proposed a configuration mechanism that dynamically adjusts these thresholds to meet specific 
reliability targets under varying load conditions [6]. These works demonstrated that, depending on 
traffic patterns and service requirements, deploying a few carrier-grade servers (powerful, highly 
reliable, but energy-intensive) may be less efficient than operating many consumer-grade servers 
(less powerful, but more energy-efficient). 

Motivated by these findings and grounded in the insights from the previous deliverable, this work 
advances from analysis to design optimization. Here, we tackle the problem of determining the 
optimal deployment configuration for a server farm within a vRAN context. Given (i) a specific service 
characterized by a target reliability guarantee and known arrival and service rates, and (ii) a set of 
candidate server types with defined characteristics, we aim to compute the optimal mix (number and 
type of servers) that minimizes total cost while meeting reliability requirements. To evaluate cost, we 
adopt a general model incorporating both capital expenditure (CapEx) and operating expenditure 
(OpEx), though the framework can also be extended to cloud-based service provisioning scenarios 
requiring resource pre-booking with diverse cost-performance trade-offs. 

We validate our proposal through extensive simulations, modeling five different server types 
representative of real-world equipment. Our results show that the proposed method reduces costs 
by 22% compared to classical queueing-based approaches, achieving solutions within 3% of 
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exhaustive numerical searches at only 10% of their computational complexity. Compared to prior 
works on NFV scaling under reliability constraints (reviewed in Section 2), this deliverable introduces 
the following key contributions: 

• Development of an analytical model to estimate the resource requirements of a server farm 
needed to support a given service with defined reliability guarantees. 

• Introduction of a cost model combining CapEx and OpEx terms, linked with the analytical 
model to estimate server utilization and associated costs. 

• Formalization of the optimal server farm design problem, selecting both the type and 
quantity of servers that minimize cost while meeting reliability requirements. 

• Extension of the design methodology to heterogeneous multi-service scenarios, 
accommodating services with diverse reliability needs. 

• Validation of both the analytical model and the design algorithm via extensive simulations 
based on real-world server profiles and operational conditions. 

This deliverable therefore transitions from the theoretical SOTA analysis performed earlier to a 
concrete algorithmic approach for cost-aware, reliability-driven autoscaling of vRAN server farms, 
setting the stage for subsequent integration with mobility-driven resource planning and dynamic 
network reconfiguration strategies. 
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2. Related work 

2.1. Resource Allocation for NFV 
The research community has shown significant interest in dynamically managing cloud resources to 
minimize consumption. For example, in [26], the authors analyze the impact of various static 
algorithms for activating and deactivating resources, as well as reallocating tasks within a data center, 
with a focus on reducing energy consumption and minimizing service violations. In a subsequent 
study [27], they suggest adapting thresholds based on estimated conditions. Finally, control theory 
has historically been leveraged for energy-efficient resource allocation in cloud computing systems, 
as outlined in [28]. For example, [29] applies control theory principles for load balancing and CPU 
frequency selection, which differ from our previous work [6] where control theory is applied to drive 
the system to the desired reliability levels while minimizing energy consumption. However, the 
techniques proposed therein tackle distinct challenges compared to those addressed in this 
deliverable, and none specifically account for both the waiting queue time of the tasks and the fact 
that servers has non-zero boot up times. 

2.2. Analysis of reliability in NFV 
The study by [30] meticulously examines the reliability of a carrier-grade server system, employing a 
fault tree model at a high level that intricately links various lowerlevel Markov models. These models 
account for the inherent fallibility of hardware components such as CPUs and memory modules. A 
similar methodology is pursued in [31], where the authors examine the reliability of both virtualized 
and non-virtualized systems comprising two hosts. Furthermore, [32] delves into a related system, 
conducting a sensitivity analysis to pinpoint parameters that significantly impact reliability. A closer 
examination akin to our research is presented in [33], where a Markov chain is used to model a server 
farm, factoring in setup delays concerning response time and power consumption. Similarly, [3] 
explores the analysis within the realm of 5G/6G networks, using thresholds to manage instance 
power and performance evaluation in terms of power consumption and waiting time. However, none 
of these works have proposed a theoretical model to asses the design of an optimal server farm, 
targeting a desired level of reliability while minimizing infrastructure costs. 

2.3. NFV and Reliability 
In prior works [5], [6], [24], we have addressed a system similar to the one analyzed in this deliverable. 
In [5], we characterized service reliability and derived an optimal configuration of the server farm to 
support a required reliability while minimizing the resource consumption. In [24], we studied the 
trade-offs of a server farms in terms of reliability and power consumption based on a static 
configuration. Our analyses of [5], [24] are static and require knowledge about the system load, while 
other proposal rely on stochastic optimization [11] to find the best trade-off between resource 
consumption and average waiting time. In [6], we introduced a control theory algorithm that 
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dynamically adapted the configuration to reach the desired point of operation. However, all these 
papers assumed a fixed server farm where machines are characterized in terms of a number of 
parameters (e.g. energy consumption, capacity, lifetime). In contrast to this analysis and 
configuration problems, in this deliverable we address the design problem: given a given a set of 
parameters defining a service and a list of candidate server types, that could be used to deploy the 
server farm, select the most adequate server type to support the service. 

2.4. Motivation 
The growing reliance on virtualized infrastructures to support critical services in next-generation 
mobile networks introduces significant challenges, particularly in ensuring the reliability of auto-
scaling server farms [7], [8]. Unlike traditional best-effort services, where minor delays in resource 
activation or occasional hardware failures have little impact, mission-critical applications demand 
stringent reliability guarantees. Services such as industrial automation, autonomous driving, and 
remote healthcare require failure probabilities as low as one in a million (99.9999%), making even 
brief disruptions unacceptable. These requirements impose not only an operational challenge but 
also a design challenge: the number of active resources must be dynamically adapted to the observed 
traffic, and the type and number of servers must be selected to meet reliability goals without 
incurring excessive cost. 

Regarding the operational challenges, since traffic loads fluctuate dynamically, adaptive resource 
allocation is needed to prevent service interruptions while minimizing Operational Expenditures 
(OpEx). Some solutions rely on auto-scaling techniques to adapt to the traffic load [9], [10] but often 
assume instantaneous activation of pshysical machines (PMs), which is unrealistic in practical 
deployments, while other solutions rely on analytical tools while taking into account the non-zero 
boot up times and fallability of servers [5], [11] (we review the related work in Section 2). Since these 
works do not tackle the design challenge, one possible strategy would be over-provisioning, where 
additional servers are deployed to ensure redundancy. While this approach improves reliability, it 
may result in significant Capital Expenditures (CapEx). 

In this deliverable, we develop a cost-aware optimization framework that selects the optimal type 
and number of servers, minimizing both CapEx and OpEx while meeting stringent reliability 
constraints. We focus on the worst-case scenario, assuming that the peak traffic load corresponds to 
the average traffic load as this imposes the most demanding operational constraints, ensuring that 
our methodology remains applicable to other scenarios. 
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3. System Model 
We assume the same system as in [5], [6], i.e., an autoscaling server farm for NFV, comprising a 
centralized infrastructure manager (IM) and several physical machines (PMs). Initially, we assume a 
homogeneous server deployment (i.e., server homogeneity), meaning that all PMs are modeled after 
the same type of server. This assumption simplifies the operational procedures, as maintaining a 
uniform hardware profile reduces management complexity and operational costs, making 
heterogeneous deployments more costly [12]. We describe how our framework can be adapted to 
heterogeneous scenarios in Section 5.5. 

In the current deliverable, we refer with “task” to a traffic session, which refers to an instance of a 
stringent URLLC service such as remote-assisted driving, an industrial slice in a factory environment, 
or tele-operated driving. Assuming independence among traffic sessions, following the Palm–
Khintchine theorem the aggregate arrival process asymptotically behaves like a Poisson process. 

Following the above, a deployment can be modeled with a set of parameters that characterizes its 
performance: each PM can support a maximum of 𝑀 tasks, which we refer to as server capacity, and 
has an exponential lifetime1 and boot up times, with average 1/𝛽  and 1/𝛼 , respectively (the key 
variables in this deliverbale are summarized in Table 1). Following [14], [15], we assume a load-
proportional power consumption model for the PMs, characterized by a fixed term 𝑃!"#$ , and the 
proportional term 𝑃#%&" , which can be computed as the difference in tasks between the so-called 
peak power consumption 𝑃'$&(  and the idle term, i.e., 

𝑃#%&" =
𝑃'$&( − 𝑃!"#$

𝑀
 

Each server has a monetary cost K and a lifespan R. We denote with 𝜏!  the set of parameters that 
characterizes a given server type 𝑖, i.e., 𝜏𝑖 	=	 {𝑀𝑖, 𝛽𝑖, 𝛼𝑖, 𝑃𝑖𝑑𝑙𝑒, 𝑖, 𝑃𝑙𝑜𝑎𝑑, 𝑖, 𝐾, 𝑅}, and with 𝑇	 = 	 {𝜏), 𝜏*, . . . } the 
set of candidate server types. 

Tasks arrive to the system following a Poisson process (note that this assumption is relaxed in our 
performance evaluation) at a rate λ and require an exponential service time of average 1/µ. During 
the initial planning phase, we rely on parameter estimates to dimension the system as optimally as 
possible, while at runtime, we employ adaptive mechanisms (such as stochastic optimization [11]) to 
guide operational decisions, including determining the number of active servers. Moreover, system 
measurements collected during operation can be used to iteratively refine parameter estimates, 
thereby improving system dimensioning over time. 

The IM balances the load across PMs, seamlessly migrates tasks whenever needed (e.g., a machine is 
about to fail), and powers PMs on and off as needed. Each PM can be in one of three states: active 
(serving tasks), booting up (initiating due to a need for more resources), or stopped (either due to a 

 
1 Addi%onal experiments (not reported here due to space constraints) indicate that our framework also applies to other scenarios. These include: 

(i) correlated failures, modeled as a twostate Markov chain with dis%nct average life%mes in each state [13]; and (ii) non-exponen%al distribu%ons for 
boot-up %mes and life%mes. Specifically, we tested constant and Weibull-distributed boot-up %mes, and Weibull-distributed life%mes across mul%ple 
server classes, using parameters chosen to match the same mean values as in the exponen%al case. 
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crash or because they are not needed to handle the current traffic load). To power on/off the PMs, 
the IM implements the following policy. At least one server is kept active at all times to avoid any 
delay to serve in arriving tasks. For the rest of the servers, a threshold-based policy is followed, where 
the thresholds to power on or off a server depend on the number of active servers, denoted by m: a 
new server is activated when the number of tasks in the system reaches 𝑠+, and deactivated when 
the number of tasks reaches 𝑠+ 	− 	1. The motivation behind this lack of hysteresis is motivated by 
the objective of achieving the largest possible energy savings, which is accomplished by keeping the 
absolute minimum number of servers active at any given moment to meet performance guarantees 
[5]. These energy savings are gained at the expense of a higher frequency of server state transitions, 
which might lead to some hardware wear-and-tear. 

The farm serves tasks with high reliability requirements, e.g., an industry 4.0 service [4] or 
autonomous driving services [16]. When a task arrives, the IM selects an active PM with sufficient 
resources to handle it. If no PMs are available to handle the task, the IM queues it until either a task 
finishes service or a PM boots up. In any case, this results in a service disruption, which negatively 
affects the committed reliability of the task. Since PMs are prone to failure, an active PM may crash 
at any time. If it was processing tasks, we assume that these can be seamlessly (i.e., with negligible 
latency and energy overheads) migrated to another active PM, where sufficient resources are 
available –note that this is already supported in Linux environments [17] with open-source 
technologies such as ACHO [18].2 In case there are not enough active PMs, the affected tasks are 
placed on hold until sufficient PMs are activated again, which again is considered a service disruption. 

We assume that the successful provisioning of the service requires a minimum reliability level. This 
reliability level is determined by the probability of a task being disrupted, which is denoted as	𝑃, , 
being below a maximum threshold, denoted as 𝑇, .  Although the terms “reliability” and “failure 
probability” refer to complementary terms, e.g., a reliability of 3 nines (99,9%) corresponds to a failure 
probability of 10-. , for readability reasons we will use them interchangeably throughout the 
deliverable. 

Variable Description 

𝑁 Maximum number of physical 
servers 

𝑀 Capacity of one server 

𝜆 Task arrival rate 

1/µ Average service time of a task 

1/𝛽 Average lifetime of a server 

1/𝛼 Average boot time of a server 

 
2 For instance, assuming a failover mechanism over a reliable wired network, as in [18], and a memory transfer of 64 MB over a 1 Gbps link, each 

migra%on requires approx. 500 ms, which is significantly shorter than typical session dura%ons. Based on our simula%on results and the power model 
in [19], this results in an addi%onal power consump%on of approx. 0.18 W, which is negligible compared to the idle consump%on of a server. 
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𝑠) Activation threshold with m active 
servers 

𝐶 Total cost 

𝐶*+, Cost associated to CapEx 

𝐶-, Cost associated to OpEx 

𝐾 Equipment cost 

𝑅 Equipment lifespan 

𝑁. Average number of users in the 
system 

𝑁+ Average number of active servers 

𝑃/0+1 
Energy consumption due to resource 
usage 

𝑃21/3 
Energy consumption due to active 
server count 

𝑃4 Failure probability of the server farm 

𝑇4 Target failure probability 

TABLE 1 KEY VARIABLES USED THROUGHOUT THE DELIVERABLE 

To guarantee the required reliability, we assume that the server farm executes the algorithm 
presented in [6], which automatically drives the (de)activation thresholds {𝑠+} to an adequate point 
of operation (note that in [6] we illustrate that the algorithm provides the most energy saving 
operation, but we did not provide the actual values of these parameters). In this Deliverable, we 
address the optimal design of the server farm, i.e., given the set of available candidate server types 
𝑇	, determine the most appropriate server type, which is denoted by 𝜏∗, and the required number of 
servers, denoted by 𝑁, that guarantees the required performance while minimizing the cost. 
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4. Analysis and design of the server farm 
In this section, we formalize the optimization problem that we address in this Deliverable, which is 
the choice of the optimal server type and the number of servers to support a given service while 
minimizing the cost. To this aim, we first introduce our cost model, and then an analytical model to 
characterize the operation of the server farm, which is used by the algorithm to select the best server 
type. 

4.1. Cost model 
Following the usual assumptions in the literature (e.g., [20]), we assume that the total cost of the 
server farm composed of PMs of type τ is given by the sum of the Capital Expenditure (CapEx) and 
Operating Expenditure (OpEx). 

𝐶(𝜏) = 	𝐶0&'(𝜏) +	𝐶1'(𝜏),				(2) 

where the CapEx term CCap is determined by initial investments in infrastructure, while the OpEx term 
𝐶1'  is determined by the cost of running and maintaining the service. More specifically, 𝐶0&'  is 
determined by the number of servers required to provide a service 𝑁, their cost 𝐾, and the equipment 
lifespan in hours 𝑅, according to: 

𝐶0&' = 𝑁 ×
𝐾
𝑅
,					(3) 

where 𝑅 is the average lifespan for the type of server considered, considering the expected load and 
wear-and-tear effects; the OpEx term is determined by the resource consumption due to the service 
provisioning. Following our previous work [6], this is given by the number of resources required to 
process the tasks, and therefore the OpEx term can be expressed as 

𝐶1' 	= 	 (𝑃#%&"𝑁2 	+ 	𝑃!"#$𝑁&) × 	𝑘𝑊ℎ,						(4) 

the average number of users in the server farm, Na denotes the average number of active servers, and 
𝑘𝑊ℎ	represents the monetary cost of energy per hour.3 Note that we consider that the server farm is 
working continuously in a time span of a year. 

Both (3) and (4) depend on several parameters: a subset of them corresponds to numerical figures 
that are determined for a given server type 𝜏! , i.e., 𝐾, 𝑅, 𝑃#%&" , and 𝑃!"#$ , while the rest of them depend 
on the operation conditions, i.e., the average number of users 𝑁2, the total number of servers 𝑁, and 
the average number of active servers 𝑁& . We next present an analytical model to compute these. 

 
3 For simplicity, our cost model assumes a fixed average energy price. This could be extended to incorporate dynamic pricing (e.g., %me-of-day 

tariffs) by adjus%ng for load and cost varia%ons across %me periods. 
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4.2. Average number of users Nu and user distribution 
To compute the average number of tasks and their distribution, we make the approximation that 
incoming tasks never wait to be attended. This approximation is motivated by the fact that the 
number of tasks that will have to wait is very small and hence this approximation will have a very 
small impact on the resulting task distribution. Assuming that the impact of server failures is 
negligible, the system behaves as an M/M/∞ system [21], and therefore the probability of having n 
users in the system, denoted by pn, follows a Poisson distribution given by the following expression 

𝑝3 = J
𝜆
𝜇M

3 𝑒-4/6

𝑛!
,					(5) 

Where the average number of users is 

𝑁2 =
𝜆
𝜇
,					(6) 

4.3. Total number of servers N 
To compute the required number of servers, we look at the number of servers that are needed to be 
able to serve all tasks with a very high probability (provided that all servers are active). In particular, 
we enforce that the probability that an arriving task does not have to wait, when all servers are active, 
is well above 1−Tf, i.e., the failure due to all servers being busy is much smaller than the failure due 
to other reasons, which can be as large as 𝑇, . More specifically, we enforce that the probability that 
a task does not have to wait is equal to 𝑠	 = 	1	 −	𝑇,/𝑋, where 𝑋 is a sufficiently large value (unless 
otherwise stated, in the rest of the Deliverable we take 𝑋	 = 	10). 

Note that following (5) the s-percentile of the total number of users in the system, denoted as Nu(s), 
is given by 

𝑁2(𝑠) = min W𝑄 ∈ ℕ[∑ 1
𝑛! ]

𝜆
𝜇^

7
389

3
𝑒-

4
6 ≥ 𝑠`,					(7) 

To meet the requirements stated above, we need to ensure that the system can host up to 𝑁2(𝑠). 
This means that, if the size of a server in tasks is given by 𝑀, the number of servers in the system 
needs to be dimensioned as follows: 

𝑁 =
𝑁2(𝑠)
𝑀

,					(8) 

4.4. Average Number of active servers 𝑁! 
Given the user distribution probability {𝑝3} provided by (5), and the set of activation thresholds {𝑠+}, 
which is computed below, the average number of active servers 𝑁&  is given by 
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𝑁& = 1 + c 𝑚
:

+8*

c 𝑝3

;!"#-)

38;!

,					(9) 

where the first term accounts for the fact that there is always at least one active server active, and 
the second term computes the weighted average of a number of servers 𝑚 and the probability of 
having that number of servers active (there are m active servers if the number of users is between 𝑠+  

and 𝑠+<) − 	1). 

4.5. Computation of the activation thresholds 
As described in Section 3, the activation thresholds {𝑠+} are automatically configured using a control 
theoretical mechanism [6] that guarantees that the failure probability 𝑃,  is below the target 𝑇, while 
minimizing the energy consumption. In this section, we provide a theoretical analysis to estimate the 
value of these thresholds. 

To perform the analysis, again we neglect the impact of the finite server lifetime on failures, i.e., we 
assume that all service failures are due users arriving to the system with not enough resources to 
immediately start service. This assumption reflects the server farm’s operation, where the auto-
scaling scheme enables re-routing tasks from a failing server to other available resources; our 
simulations confirm such direct failures have a negligible impact on overall system reliability. We 
consider a scenario with 𝑚 active servers, and assume that the activation threshold for an additional 
server is set to	𝑘. Following the above, a failure will occur right after the system has 𝑘 users (and 
triggers the activation of a new server) if the total number of users exceeds the current total capacity 
of the farm	(𝑚 ×𝑀)	before another server has been fully activated, which requires a time 𝑇%3. We 
denote this conditional probability upon arrival as 𝑃,(𝑘, 𝑇%3), which corresponds to the probability of 
reaching a state with more than 𝑚 ×𝑀 users in less than 𝑇%3, starting from a state with k users. By 
denoting with 𝑃!,>(𝑡) the probability of reaching state 𝑗 from 𝑖 in less than 𝑡, the probability 𝑃,(𝑘, 𝑇%3) 
can be computed as 

𝑃,(𝑘, 𝑇%3) = c 𝑃(,>(𝑇%3)
:?

>8+?<)

,					(10) 

We exemplify the above formulation with the toy example depicted in Fig. 1. The figure illustrates a 
scenario with 𝑚	 = 	2 active servers, where each server has a capacity 𝑀	 = 	5. Assuming that the 
activation threshold for the third server is 𝑘	 = 	9	and a total of 𝑁	 = 	10 servers (i.e., a maximum of 
50 simultaneous tasks), the conditional probability of a failure when the system is in state 𝑘	 = 	9  is 
given by 

𝑃,(9, 𝑇%3) = c 𝑃@,>(𝑇%3)
A9

>8))

,				(11) 

To compute 𝑃!,>(𝑡), we assume that the transition matrix of the system 𝑸 is the same as the one from 
a classical M/M/c queue [22] with 𝑐	 = 	𝑁. 
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Based on this, assuming an initial probability distribution vector 𝑷(0), the probability distribution 
vector after 𝑡 is given by [23] 

𝑷(𝒕) = 𝑷(𝟎)𝑒B7 ,						(12) 

and therefore 𝑃!,>(𝑡) can be computed by substituting 𝑷(0) with a distribution vector with 1 in the 𝑖-
th position. 

 
FIGURE 1FAILURE PROBABILITY WITH ACTIVATION THRESHOLD K = 9 FOR M = 2 SERVERS WITH 

CAPACITY M = 5. 

To determine the activation thresholds, we assume that the impact of each threshold is independent 
of the others. We also assume that all tasks that arrive while server m is booting are assumed to have 
arrived when the number of users in the system was exactly equal to its activation threshold 𝑘 (rather 
than during states with fewer users). Under these conditions, Eq. (10) can be used to compute the 
failure probability associated with server 𝑚 when threshold 𝑘 is applied. Under these assumptions, 
the actual failure probability 𝑃, is upper-bounded by the conditional failure probabilities associated 
with the activation of each server. As a result, if we ensure that each of these conditional probabilities 
remains below 𝑇, , so will be the actual failure probability. Following this reasoning, we estimate the 
optimal activation thresholds 𝑠+∗  as 

𝑠+∗ = max𝑘 ∈ [(𝑚 − 2)𝑀 + 1,… , (𝑚 − 1)𝑀],				(13𝑎) 

𝑠. 𝑡. 𝑃,(𝑘, 𝑇%3) < 𝑇, ,																																																						(13𝑏) 

where we select the largest activation threshold out of those fulfilling the reliability requirement to 
minimize the activation of servers and therefore the energy consumption. 

4.6. Optimal design of the server form 
Following the above, the optimization problem can be formalized as follows. Let T denote the set of 
all possible server types, C(τ) denote the cost of using server type τ to support the service, and Pf(τ) 
the corresponding failure probability. The optimization problem is to find the optimal server type τ∗ 

defined as follows: 

𝜏∗ = min
C∈𝕋

𝐶(𝜏),															(14𝑎) 

𝑠. 𝑡.					𝑃,(𝜏) ≤ 𝑇, ,										(14𝑏) 
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Since server types have no relation with each other, nor between the parameters that characterize 
their performance, there is no alternative to performing an exhaustive search on all server types. 
Based on this, to compute the optimal server design, we follow these steps: 

1) We compute the average number of users using (6). 
2) Then, for each server type 𝜏	 ∈ 	𝕋 : 

a) We compute the total number of servers using (8). 
b) We estimate the activation thresholds with (13a). 
c) We compute the average number of active servers using (9). 
d) We compute the total cost with (2). 

3) Finally, we select the deployment 𝜏∗ with the mini-mum cost. 
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5. Performance Evaluation 
In this section, we first assess the accuracy of the analytical model and then validate the proposed 
algorithm to design the server farm. Results from the analytical model are obtained using MATLAB 
Release 2023a, while simulation results are obtained using a discrete event simulation written in C++. 
This simulator was also used in our previous works [5], [6], [24]. We perform as many replications as 
required until the confidence intervals are below 1% of the average (not shown for clarity). Note that 
the simulation does not relax certain assumptions of the analytical model such as the server 
infallibility. All computations are performed on a server equipped with an Intel Core i7 CPU with 4 
cores, 8 threads, operating at a base frequency of 1.30GHz, and supported by 16 GB of RAM. 

 Carrier Enterprise Consumer Rack Blade 

Capacity 𝑀	(𝑡𝑎𝑠𝑘𝑠) 16 4 2 12 32 

Boot-up 1/𝛼	(𝑚𝑖𝑛) 3 8 18 2 1 

Lifetime 1/𝛽	(𝑑𝑎𝑦𝑠) 32 16 8 7 4 

𝑃!"#$	(𝑊) 270 78 7.6 70 241 

𝑃%&#'	(𝑊) 7.5 18.22 1.5 3.33 22.84 

𝑃('%"	(𝑊) 150 5.1 4.6 30 20 

𝐶𝑜𝑠𝑡	𝐾	(€) 2000 500 100 1000 300 

Lifespan 𝑅	(𝑦𝑒𝑎𝑟𝑠) 10 6 2 8 4 

TABLE 2 DEPLOYMENTS CONSIDERED IN THE PERFORMANCE EVALUATION. 

We assume that boot up times and lifetimes are exponential random variables too, with an average 
that depends on the server type 𝜏. We focus on the following set of target failure probabilities 𝑇, 	=
	{10-., 10-_, 10-A}, which correspond to a reliability between three nines (99.9%) and five nines 
(99.999%). 

5.1. Server types 
In our experiments, we consider five different server types, ranging from cost-effective consumer-
grade machines to high-performance blade servers. These configurations were previously defined in 
[6], [24], and for completeness, we summarize their performance parameters in Table 2. The selected 
server types cover a broad range of characteristics, ensuring that our analysis and design are 
validated under diverse conditions. However, our analysis is not tied to these specific configurations, 
i.e., our model can be applied to assess the performance of alternative parameterizations and support 
the design of other server farm architectures. Lastly, we emphasize that this list is not an exhaustive 
catalog of possible server types. 
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5.2. Model validation 
We first confirm the validity of the analytical model to estimate the required performance figures to 
compute the cost for a given configuration 𝜏, namely, the average number of users 𝑁2, the number 
of servers 𝑁, and the average number of active servers 𝑁&, which in turn depends on the activation 
thresholds {𝑠+}. To this aim, we next compare the results obtained using the analytical model with 
those obtained using simulations. To obtain these, we use the following methodology. For a given 
value of 𝜆 and µ, we initially set the number of servers to 𝑁	 = 	𝜆/µ (i.e., the load in Erlangs), and run 
the simulations using the configuration algorithm in [6] that aims at minimizing resource 
consumption while ensuring that the failure probability 𝑃, is below the target value 𝑇, . If 𝑃,	is above 
𝑇, , we increase the number of servers 𝑁  by one and repeat the process, until 𝑃,  is below 𝑇, . 
Throughout or model validation, we consider three different inter-arrival distributions, each 
represented with a distinct symbol in the figures: 

 
FIGURE 2 AVERAGE NUMBER OF USERS VS. 𝝀 USING ANALYSIS (LINES) AND SIMULATIONS (SYMBOLS). 

• Exponential distribution, with rate 𝜆	 = {0.2, 0.4, . . . , 4.0} tasks/min. 
• Pareto distribution, with shape parameter 𝛼	 = 	2  and scale parameter 𝑥+ 	=

	{2.5, 1.25, . . . , 0.125} min/tasks. 
• Weibull distribution, with shape parameter 𝑘	 = 	2  and scale parameter 𝜃	 =

	{5.6, 1.12, . . . , 0.28} min/tasks. 
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5.2.1. Average Number of users and distribution of users 
We start our model validation by comparing the analytical results of Section 4.2 with those obtained via 
simulations. We first compare the average number of users obtained using (6) with those computed using 
simulations, for all considered server types and the different arrival rates considered. 

We present the results in Fig. 2, using points for the simulation results and lines for the analytical values. The 
figure confirms the good accuracy of the analytical model, since the results practically overlap. 

We also compare the distribution of users using (5) with those computed using simulations, for all the server 
types and three selected values of λ. We depict the probability mass function of the user distribution in Fig. 3, 
using bins for simulation results and black lines for the analytical values obtained using (5). These results also 
confirm the accuracy of the distribution of users of the analytical model, as the differences between the 
theoretical and experimental distributions are very small. 

 
FIGURE 3USER DISTRIBUTION FOR DIFFERENT 𝝀 VALUES: ANALYSIS (LINE) AND SIMULATION (BINS AND 
SYMBOLS). 

5.2.2. Total number of servers 
Here we assess the validity of our analysis to dimension the server farm. To this aim, we compare the total 
number of servers N required to guarantee 𝑃4 	< 	𝑇4  using the methodology described for the simulations 
with the values obtained via (8). We perform the comparison for the same values of 𝜆 as before and all server 
types using 𝑇4 	= 	 1067, and depict the corresponding results in Fig. 4, using lines for the analytical results 
and points for those obtained using simulations. 
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FIGURE 4 MAXIMUM NUMBER OF SERVERS VS. 𝝀 USING ANALYSIS (LINES) AND SIMULATION (SYMBOLS). 

Like in the previous case, the results confirm the accuracy of the model, as the results practically overlap for 
all considered values of 𝜆 and server type, with an average error of 4.6% and the maximum error being below 
10%. As expected, the number of required servers grows with the inverse of the server capacity 𝑀, with the 
consumer-grade server type requiring the maximum number of servers, and the blade type the minimum. We 
find that the analytical figures are always above the ones obtained using simulations, and therefore the total 
number of servers according to our design never falls below the required number of servers. Finally, we 
conducted the same experiment for the rest of server types and 𝑇4 values, obtaining an average error of 4.8% 
and a maximum error below 12%. 

λ 
(tasks/min) 

 s2 s3 s4 s5 s6 s7 s8 s9 

0.2 Sim. 22 34 46 58 70 82 94 106 

Ana. 21 33 45 57 70 82 94 106 

∆s 1 1 1 1 0 0 0 0 

0.4 Sim. 21 33 45 57 69 82 94 106 

Ana. 20 32 44 56 68 80 93 105 

∆s 1 1 1 1 1 2 1 1 

1.0 Sim. 16 28 40 52 64 76 88 100 
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Ana. 16 28 41 53 65 77 90 102 

∆s 0 0 -1 -1 -1 -1 -2 -2 

2.0 Sim. 14 26 38 50 62 74 86 98 

Ana. 13 25 37 49 61 73 85 98 

∆s 1 1 1 1 1 1 1 0 

3.0 Sim. 13 25 37 49 61 73 85 97 

Ana. 13 25 37 49 61 73 85 97 

∆s 0 0 0 0 0 0 0 0 

4.0 Sim. 12 24 36 48 60 72 84 96 

Ana. 12 24 36 48 60 72 83 96 

∆s 0 0 0 0 0 0 1 0 

TABLE 3 ACTIVATION THRESHOLDS FOR THE RACK SERVER DEPLOYMENT AND DIFFERENT VALUES OF 𝝀. 

5.2.3. Activation Thresholds 
Here we validate the analysis presented in Section E to estimate the values of the activation thresholds {𝑠)} 
configured by the algorithm. To this aim, we first focus on the configurations using the rack server type and 
set 𝑇4 	= 	 1068 as the maximum failure probability and compare the first eight values of the vector {𝑠)} for 
different values of the arrival rate	𝜆 as in the previous sections. The simulation (Sim.) and analytical (Ana.) results 
are presented in Table 3, as well as the difference (∆𝑠). 
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FIGURE 5 AVERAGE NUMBER OF ACTIVE SERVERS VS. 𝝀 USING ANALYSIS (LINES) AND SIMULATION 
(SYMBOLS). 

The table illustrates that as the load grows, the activation thresholds decrease, since servers need to be 
activated with more anticipation to accommodate the incoming tasks. It also shows a good match between the 
results predicted by the model and those obtained using simulations, with a mean absolute difference of 0.6 
tasks and a maximum difference of 2 tasks. We repeated the same experiment for the other types of servers 
and the considered 𝑇4 values, with the mean absolute difference being 0.7 tasks and the maximum absolute 
difference being 2 tasks. These results again confirm the accuracy of the analytical model to estimate the 
configuration of the server farm. 

5.2.4. Average number of active servers 
Finally, we assess the accuracy of (9) to estimate the average number of active servers, using the same 
methodology as before. As in the previous cases, we first assume 𝑇4 = 1067 and different values of the traffic 
load. We represent in Fig. 5 with lines the results from the analytical model and with points those using 
simulations. The figure confirms the accuracy of the model, with an average absolute error of 0.45 servers and 
a maximum absolute error of 0.62 servers. Like in the case of Fig. 4, the larger the capacity 𝑀 of the server type, 
the smaller the average number of active servers. 

Based on the above results, we confirm the accuracy of the analytical model to predict the performance of a 
server farm for different traffic loads, reliability requirements, and server types. We next assess the performance 
of the algorithm proposed to design the server farm. 

5.3. Design of the server farm 
Following the validation of the analytical model, we next assess the performance of the algorithm 
presented in Section 4.6 to design a server farm. To this aim, we assume the same set of traffic rate 
values λ and target failure probability levels 𝑇, 	= 	 {10-., 10-_, 10-A} considered before. To provide 
an adequate context, we compare the results from our algorithm against two benchmarks: 

• An exhaustive search in the configuration space. 
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• A benchmark based on the Erlang-C [25], which determines for each type of server the 
number of resources required to ensure that the probability of blocking meets a specific 
reliability target (i.e., 𝑃 	= 	1	 − 	𝑅), and selects the minimum. 

For each considered scenario, we compute: 

• For each of the five server types considered, the minimum cost (𝐶;) obtained via simulations 
using a search on the total number of servers. 

• The optimal server type 𝜏∗  and corresponding cost (𝐶&) according to our algorithm. 
• The difference between the minimum cost obtained with the numerical search and the one 

obtained with our algorithm (∆𝐶). 
• The cost of the benchmark design 𝐶a  based on the Erlang-C, and the corresponding 

difference vs. 𝐶&, denoted as ∆𝐵. 

We provide the resulting figures for the 𝜆 and 𝑇, values considered in Table 4. For each scenario, we 
highlight in gray the minimum cost obtained using simulations, and in bold font the resulting 𝜏∗ 
whenever the best type of server according to our method corresponds to the one that minimizes 
costs using simulations. 

There are several results that can be derived from Table 4. First, both for simulations and analysis, 
the minimum cost increases as the load increases, since more resources are needed to accommodate 
the incoming traffic. Second, there is no optimal server configuration for all scenarios, as the best 
server type alternates between the five considered types depending on the load and reliability 
considered. Third, we note that our configuration algorithm provides the optimal server type in 16 
out of the 18 scenarios considered (i.e., 88.8% of the scenarios), and that for those two scenarios the 
relative error in terms of cost is smaller than 2%. The average cost difference between the 
configuration provided by the algorithm and the simulations is 3%, which confirms the effectiveness 
of our proposal to design a server farm. Fourth, the comparison of the cost between the analysis (𝐶&) 
and benchmark (𝐶a) highlights the advantages of using our proposed method over a predefined 
benchmark configuration. We note that the absolute cost for the benchmark is notably higher than 
the one by the analysis for all combinations. The benchmark consistently results in a higher number 
of servers due to its more pessimistic assumptions. The relative cost difference (∆𝐵) demonstrates 
that relying on a fixed server configuration can lead to significant cost inefficiencies, with the 
benchmark costing on average 22% more than the optimized analysis-based approach. In some 
cases, such as 𝜆 = 0.2 and 𝑇, = 10-_, the cost increase reaches 54%, reinforcing the importance of 
dynamically selecting the optimal server type rather than adhering to a static deployment strategy. 
Finally, the table also highlights the importance of an adequate selection of the best server type, in 
addition to its optimal configuration, since there are substantial differences in terms of cost between 
optimal server deployments with different types. For instance, for 𝜆 = 0.2 and 𝑇,	= 10−3 (first row of 
the table), there is a factor of 3.33× between the minimum cost using the Enterprise type of server 
and the one using the Rack type of server, while the average difference across the table is 1.64×. 
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5.4. Computational Time 
Finally, we compare the time to determine the optimal design using the method presented in Section 
4 with an exhaustive search using simulations. To this aim, we compute the total execution time 
required for each approach. We assume the same scenarios as before with different values of λ and 
the reliability levels Tf = {10−3,10−4,10−5}. We illustrate the results in Fig. 6, using a logarithmic scale on 
the y axis. 

According to the figure, the proposed method results in significantly shorter execution times for all 
values of λ and Tf. Furthermore, these times are practically constant, while simulation times increase 
with the traffic load, and with the inverse of Tf. Based on these results, we conclude that the analysis 
developed in Section 4 offers a cost-effective solution, particularly well suited for scenarios 
demanding robust, scalable, and resource efficient methodologies. 

 
FIGURE 6 EXECUTION TIME VS. LAMBDA REQUIRED BY SIMULATION (DASHED LINES) AND ANALYSIS 
(CONTINUOUS LINES) FOR DIFFERENT VALUES OF 𝑻𝒇. 
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TABLE 4 MINIMUM COST DESIGN USING SIMULATIONS (𝑪𝒔), OUR ANALYSIS (𝑪𝒂), AND THE BENCHMARK 
(𝑪𝒃). 

5.5. Heterogeneous scenarios 
As discussed in Section 3, we initially consider homogeneous scenarios, where a single type of service 
is provided by a single type of server. In this section, we relax this assumption to demonstrate how 
the proposed framework can be extended to design heterogeneous scenarios. Specifically, we 
consider a case with two types of services, labeled 1 and 2. Both have the same service rate µ, but 
differ in their reliability requirements, 𝑇)  and 𝑇*, as well as their arrival rates, 𝜆) and 𝜆*, respectively. 

One way to design a heterogeneous server farm using our framework is to independently determine 
the optimal server type for each type of traffic. We denote these as 𝜏!∗ for 𝑖	 ∈ 	1,2. Assuming that the 
Infrastructure Manager (IM) redirects each type of task to the corresponding server type, the total 
cost of this heterogeneous design is given by: 

𝐶b$B = 𝐶(𝜏)∗) + 𝐶(𝜏*∗),					(15) 

As a benchmark, we assume a homogeneous design to support the total traffic 𝜆) 	+ 	𝜆*  and the most 
stringent reliability requirement, 𝑚𝑖𝑛(𝑇), 𝑇*). The resulting cost of this design is denoted as	𝐶b%+. 
Table 5 presents the resulting values of 𝐶b$B  and 𝐶b%+  for different values of 𝜆), 𝜆*, 𝑇), and 𝑇*. It also 
reports the relative difference between the homogeneous and the heterogeneous design, ∆𝐵. Note 
that for some scenarios, the cost 𝐶b%+is reused from Table 4. 

 

λ Tf Carrier Enterprise Consumer Rack Blade τ* Ca ∆C Cb ∆B
10^-3 495.98 256.26 665.26 855.4 260.03 Blade 260.6 1.70% 388 49.01%
10^-4 498.17 268.04 668.52 858.25 261.73 Enterprise 265.2 1.30% 408 54.00%
10^-5 502.53 275.78 671.83 861.07 265.21 Blade 269.7 1.66% 474 75.76%
10^-3 824.32 712.03 1006.47 1569.52 706.9 Blade 716.1 1.28% 777 8.47%
10^-4 828.42 763.08 1013.58 1573.58 710.14 Enterprise 766.9 0.50% 840 9.64%
10^-5 835.07 770.93 1125.36 1580.05 770.55 Blade 787.8 2.24% 1084 37.63%
10^-3 1634.8 1557.3 1360.3 1860.12 1631.93 Consumer 1365 0.36% 1516 11.06%
10^-4 1681.6 1729 1747.32 1865.57 1747.15 Enterprise 1747 1.05% 1860 6.47%
10^-5 2055.1 2028.34 2022.25 2056.09 2031.67 Consumer 2190 6.50% 2431 11.00%
10^-3 2995.7 3131.26 2804.93 2812.14 3121.38 Consumer 3009 7.26% 3119 6.97%
10^-4 3010.1 3150.12 2899.54 2892.2 3135.09 Consumer 3094 6.70% 3191 10.05%
10^-5 3140.2 3175.16 3126.13 3198.45 3150.67 Consumer 3205 2.52% 3365 6.76%
10^-3 3861.4 3891.09 3917.21 3901.75 461.36 Carrier 4101 6.20% 4838 17.96%
10^-4 3975.1 4005.11 3990.17 3947.93 4625.2 Rack 4148 4.40% 5199 31.36%
10^-5 4102.2 4188.63 4190.37 4321.54 4660.33 Consumer 4334 4.49% 5867 35.41%
10^-3 5321.7 5561.98 5432.71 5412.82 5871.76 Carrier 5588 5.01% 6007 7.50%
10^-4 5640.2 5580.29 5521.96 5512.15 6189.34 Rack 5644 1.36% 6345 12.43%
10^-5 5980.3 5821.87 5820.19 5847.63 5930.54 Consumer 5893 1.36% 6641 12.67%

2

1

Simulation Cost (Cs) Analysis Benchmark

0.2

0.4

4

3
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λ1 T1 λ2 T2 Chet Chom ∆B 
0.3 10-3 0.7 10-4 1831.92 1729.00 -5.95% 
0.3 10-4 0.7 10-3 1714.34 1729.00 0.85% 
0.3 10-4 0.7 10-5 2032.31 2022.25 -0.50% 
1.5 10-3 1.5 10-4 3892.55 3947.93 1.40% 
1.5 10-4 1.5 10-3 3892.55 3947.93 1.40% 
1.5 10-4 1.5 10-5 4422.17 4147.31 -6.63% 
1.5 10-3 2.5 10-4 5218.46 5512.15 5.33% 
1.5 10-4 2.5 10-3 5159.25 5512.15 6.40% 
1.5 10-4 2.5 10-5 5509.08 5820.19 5.35% 
λ1 T1 λ2 T2 Chet Chom ∆B 
0.3 10-3 0.7 10-4 1831.92 1729.00 -5.95% 
0.3 10-4 0.7 10-3 1714.34 1729.00 0.85% 
0.3 10-4 0.7 10-5 2032.31 2022.25 -0.50% 
1.5 10-3 1.5 10-4 3892.55 3947.93 1.40% 
1.5 10-4 1.5 10-3 3892.55 3947.93 1.40% 
1.5 10-4 1.5 10-5 4422.17 4147.31 -6.63% 
1.5 10-3 2.5 10-4 5218.46 5512.15 5.33% 
1.5 10-4 2.5 10-3 5159.25 5512.15 6.40% 
1.5 10-4 2.5 10-5 5509.08 5820.19 5.35% 

TABLE 5 HETEROGENEOUS SCENARIOS. 

The results confirm that our proposal can be extended to heterogeneous scenarios, as most 
configurations yield additional cost savings –up to 6.4% in some cases. However, these gains remain 
moderate due to two main factors. First, traffic is isolated across server types, which prevents 
potential multiplexing gains. Second, our homogeneous design already performs well, leaving 
limited room for further improvement except in specific scenarios. As discussed in Section 6, our 
ongoing work focuses on developing novel analytical models to more effectively address the design 
of heterogeneous server farms. 
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6. Summary and Conclusions 
Designing server farms that can automatically scale to meet changing demands is a complex task—
especially in 5G and beyond networks, where reliability and latency are critical. The challenge lies in 
balancing performance and cost, while accounting for practical constraints such as server boot-up 
delays, hardware failure risks, and finite lifespans. Traditional approaches often overlook these factors 
or take a conservative path, over-provisioning resources to ensure service guarantees—at the 
expense of efficiency and cost. 

In this paper, we introduced a comprehensive framework for cost- and reliability-aware auto-scaling 
of virtualized server infrastructures. By combining queueing theory, cost modeling, and server 
selection, our method identifies deployment strategies that minimize infrastructure and operational 
expenses without compromising service reliability. It accounts for real-world constraints like startup 
latency and failure probabilities, making it particularly suited for demanding applications such as 
industrial automation, autonomous vehicle coordination, and mission-critical IoT services. 

Beyond its theoretical contribution, this framework lays the groundwork for the development of a 
dedicated auto-scaling rApp within the O-RAN architecture, specifically hosted in the Non-RT RIC. 
Such an rApp would use historical traffic data and service KPIs to forecast demand and compute 
optimal provisioning plans for the virtualized RAN (vRAN). These recommendations could be pushed 
to the O-Cloud orchestrator through the O2 interface, or dynamically adjusted via A1 policies in 
coordination with the Near-RT RIC. This approach enables intelligent, adaptive resource allocation, 
ensuring that critical network functions receive the computing power they need—no more, no less—
enhancing both reliability and cost-efficiency. 

As part of our ongoing work, we are extending this framework in several directions. First, we aim to 
support heterogeneous and multiplexed resource sharing, moving beyond service-class-specific 
deployments to exploit cross-service synergies. Second, we are integrating end-to-end latency 
modeling, taking into account RAN performance, VNF chaining, and network topology to better meet 
URLLC (Ultra-Reliable Low-Latency Communications) requirements. Finally, we are implementing the 
solution in Linux-based test environments, incorporating load-balancing mechanisms and leveraging 
tools like ACHO for seamless service migration. These enhancements are key steps toward deploying 
a practical, scalable, and vendor-neutral auto-scaling solution that fits naturally within the evolving 
O-RAN and vRAN ecosystems. 
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