
   

 

  

 

 

 

UNICO I+D Project 

6G-SORUS-RIS 

 

 

SORUS-RIS-A2.2-E2 

Clasificación final de UEs según el 

modelo de comportamiento 
 

 

Abstract 

This document presents the research activities carried out in the second period of SORUS-RIS-A2.2. 

These activities include the mapping of users' cognitive and emotional variables to multimodal 

psychophysiological signals, the analysis of the reliability and robustness of these signals, and, finally, 

the definition of the final version of the user clustering algorithm based on their response to latency, 

in the context of using existing services in the real world. The results demonstrate the usefulness of 

this approach and provide user profiling that can be considered in future applications to provide 

users with more personalized telecommunication services.   
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Resumen Ejecutivo 

Este documento presenta las actividades de investigación realizadas durante la segunda fase 

de SORUS-RIS-A2.2. 

Durante la primera fase, se llevaron a cabo las siguientes acciones: identificar los conceptos 

psicológicos relevantes relacionados con la percepción de latencia y su impacto en los usuarios; 

revisar las metodologías disponibles para su medición; y mapear la sensibilidad subjetiva de los 

usuarios a la latencia utilizando conjuntos de datos abiertos, junto con una exploración preliminar 

de la asociación entre las señales psicofisiológicas y la latencia a través de un estudio piloto. Los 

resultados de estas actividades sugirieron que un enfoque multimodal, que combine métricas 

autorreportadas con métricas psicofisiológicas, es esencial para lograr un perfilado de usuarios más 

preciso. 

Sobre esta base, la segunda fase de SORUS-RIS-A2.2 se centró en la construcción y el análisis 

sistemático de conjuntos de datos psicofisiológicos, que fueron fundamentales para completar la 

tarea 3 presentada en este entregable. Estos conjuntos de datos capturaron las respuestas de los 

usuarios en tres escenarios distintos que reflejan interacciones del mundo real: ver videos en 

YouTube, realizar búsquedas en línea utilizando un motor de búsqueda e interactuar con un Modelo 

de Lenguaje Grande (LLM). Al recolectar y analizar estos conjuntos de datos, se mapearon las 

variables cognitivas, emocionales y conductuales de los usuarios a sus señales psicofisiológicas 

multimodales. Los resultados sugieren que, en contextos de uso más pasivos, como ver videos en 

streaming o leer respuestas generadas por modelos de lenguaje, el impacto de la latencia se refleja 

principalmente en variables relacionadas con la motivación del usuario (señal de asimetría alfa frontal 

en EEG), la atención visual (alfa occipital), la emoción negativa (beta parietal) y la excitación 

emocional (EDA fásica). Sin embargo, cuando las variaciones de latencia son mínimas, las relaciones 

entre los indicadores multimodales y las respuestas autorreportadas de los usuarios no son fuertes. 

En contraste, en contextos más interactivos, como las búsquedas en línea, se observa una 

correspondencia más clara entre los niveles de latencia y las señales psicofisiológicas, 

particularmente EDA, EMG y HR. 

Para asegurar la robustez de los datos recolectados, se evaluó la fiabilidad de las señales 

psicofisiológicas multimodales mediante una combinación de métodos automáticos y análisis 

experto. Los resultados indican que las señales de EEG y EDA son suficientemente robustas, mientras 

que las señales de EMG a menudo mostraron segmentos ruidosos. En el caso de las señales de HR, 

se encontró que el sistema basado en ECG es más fiable que el basado en PPG. 

Finalmente, se definieron los perfiles de usuario determinando primero la sensibilidad 

individual a distintos niveles de latencia en los casos de uso analizados, y luego agrupando a los 

usuarios según sus respuestas. Los resultados indican dos grupos de usuarios distintos: aquellos que 

muestran una clara sensibilidad a la latencia y aquellos que no expresan respuestas cognitivas o 

emocionales evidentes. Esta sensibilidad se manifiesta de manera diferente dependiendo del 
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contexto: como respuestas fásicas de EDA (excitación emocional) en casos de uso más pasivos y 

como respuestas de EDA, EMG y HR en casos de uso más interactivos. 

En conclusión, a través del entregable SORUS-RIS-A2.2-E2, se ha demostrado la utilidad de 

utilizar señales multimodales para evaluar las respuestas individuales a la latencia. Un aspecto central 

de este esfuerzo fue la construcción de los conjuntos de datos que permitieron un análisis detallado 

de las respuestas de los usuarios en diversos contextos. Estos resultados han apoyado el desarrollo 

de perfiles de usuario altamente personalizados para servicios operativos del mundo real, 

contribuyendo a los avances futuros en servicios de redes de telecomunicaciones personalizados. 
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Executive Summary 

This document presents the research activities carried out during the second phase of SORUS-

RIS-A2.2. 

During the first phase, the following actions were conducted: identifying the relevant 

psychological concepts related to latency perception and its impact on users; reviewing the 

methodologies available for its measurement; and mapping users’ subjective sensitivity to latency 

using open datasets, along with a preliminary exploration of the association between 

psychophysiological signals and latency through a pilot study. The results of these activities 

suggested that a multimodal approach, combining self-reported metrics with psychophysiological 

metrics, is essential for more accurate user profiling 

Building on this foundation, the second phase of SORUS-RIS-A2.2 focused on the systematic 

construction and analysis of psychophysiological datasets, which were central to complete task 3 

addressed in this deliverable. These datasets captured user responses across three distinct scenarios 

reflecting real-world interactions: watching videos on YouTube, conducting online searches using a 

search engine, and interacting with a Large Language Model (LLM). By collecting and analysing these 

datasets, the cognitive, emotional, and behavioural variables of users were mapped to their 

multimodal psychophysiological signals. The results suggest that in more passive usage contexts, 

such as watching streaming videos or reading responses generated by language models, the impact 

of latency is primarily reflected in variables related to user motivation (EEG frontal alpha asymmetry 

signal), visual attention (occipital alpha), negative emotion (parietal beta), and emotional arousal 

(phasic EDA). However, when latency variations are minimal, the relationships between multimodal 

indicators and self-reported user responses are not strong. In contrast, interactive contexts, such as 

online searches, show a clearer mapping between latency levels and psychophysiological signals, 

particularly EDA, EMG, and HR. 

To ensure the robustness of the collected data, the reliability of the multimodal 

psychophysiological signals was assessed through a combination of automated methods and expert 

analysis. The results indicate that EEG and EDA signals are sufficiently robust, while EMG signals often 

displayed noisy segments. For HR signals, the system based on ECG was found to be more reliable 

than the one based on PPG. 

Finally, user profiles were defined by first determining individual sensitivity to distinct levels 

of latency in the analysed use cases, followed by clustering users based on their responses. The 

results indicate two distinct user groups: those who exhibit clear sensitivity to latency and those who 

do not express evident cognitive or emotional responses. This sensitivity manifests differently 

depending on the context: as phasic EDA responses (emotional arousal) in more passive use cases 

and as EDA, EMG, and HR responses in more interactive use cases. 
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In conclusion, through deliverable SORUS-RIS-A2.2-E2, the utility of using multimodal signals 

to evaluate individual responses to latency has been demonstrated. Central to this effort was the 

construction of datasets that enabled a detailed analysis of user responses across diverse contexts. 

These results have supported the development of highly personalized user profiles for real-world 

operational services, contributing to future advancements in personalized telecommunications 

network services. 
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1. Introduction 

The central aim of the SORUS-RIS-A2.2 task "Modelo de comportamiento del UE" is the 

classification of user profiles according to their psychological and behavioural response to technical 

aspects of the telecommunications network, such as latency. The rationale of the activity is that 

identifying and modelling such response can be useful in future applications to propose customized 

solutions to different users, depending on their sensitivity to the technical performance of the system. 

In this way, for example, energy saving plans could be created that take advantage of the different 

capabilities and sensitivities of different users (e.g., prioritizing lower latency to those users more 

sensitive to latency, or offering cheaper plans, with higher latency, to those with less latency-sensitive 

users).  

The previous deliverable (SORUS-RIS-A2.2-E1) described the first steps  to achieve this 

objective, which included the definition and summarization of relevant user behaviours and 

responses, and the sensors available to monitor them. It also offered a first approximation to the 

modelling of user profiles based on these behaviours and psychophysiological signals. The current 

deliverable (SORUS-RIS-A2.2-E2) offers the completion of this work, addressing the content of Task 

3 as described in activity A2.  

Task 3 ("Mapping psychological constructs into low- and high-level indicators and generation 

of user profiles") has three main objectives. First, it aims to  determine the optimal mapping of the 

behaviours identified in the previous tasks to the multimodal signals that can be obtained through 

the data channels considered in the project. Secondly, it seeks to analyze the reliability and 

robustness of each considered signal. Finally, based on the extracted signals and behaviours, it aims 

to identify user profiles according to their response to the technical performance of the system, 

particularly, to the system’s latency. 

According to this structure, the content of this Deliverable is organized as follows. Section 2 

contains the research activities conducted to address the mapping of user’ behaviours into 

multimodal data channels. Section 3 includes the assessment of the reliability and robustness of the 

psychophysiological multimodal signals employed in the project. Section 4 describes the proposed 

method and results obtained regarding user profiling based on psychophysiological signals 

clustering. Finally, section 5 summarizes the work conducted and the main extracted conclusions.  
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2. Mapping of user behaviours into multimodal data channels 

Mapping user behaviors to the psychophysiological signals collected in this study allows for 

a range of analytical approaches, depending on the specific objectives and characteristics of the use 

case (e.g., Ajenaghughrure et al., 2020; Bach et al., 2018). Two dominant approaches in literature 

include classical statistical inference and machine learning. Classical statistical methods, prevalent in 

psychology, focus on explaining relationships between variables and quantifying these associations, 

often guided by theoretical frameworks. Conversely, machine learning methods, widely applied in 

engineering and affective computing, prioritize advanced modeling and predicting user states (cf. 

Yarkoni & Westfall, 2017). This deliverable integrates both approaches to provide a comprehensive 

understanding of the relationships between psychophysiological signals and relevant behavioral 

variables. Correlation analysis was used to assess redundancy among psychophysiological variables, 

multilevel mixed models provided insights into how these modalities explain subjective indicators of 

quality of experience and latency perception, while random forests evaluated the predictive power 

of the signals for behavioral outcomes. 

Given the strong contextual influence on these relationships, this deliverable required the 

construction and analysis of datasets across three distinct scenarios to ensure robustness and 

relevance: (i) audiovisual content streaming, (ii) online information searching, and (iii) interaction with 

an Artificial Intelligence (AI) system, specifically a Large Language Model (LLM). While scenario (iii) 

represents a novel and less widespread form of interaction, its inclusion anticipates its potential 

future adoption. Developing these datasets was a central effort, forming the foundation for 

examining user responses in diverse contexts. Scenario (i), initially explored as a pilot study in 

deliverable SORUS-RIS-A2.2-E1, provided key insights that shaped the methodology. The addition 

of scenarios (ii) and (iii) introduced further complexity, enhancing our ability to understand latency 

effects across both active and passive tasks. 

  Subsequently, a dataset for each of the scenarios was built, combining psychophysiological 

signals collected in a controlled environment with corresponding behavioral variables of interest. 

Specifically, and building on the conclusions drawn from Tasks 1 and 2 from the SORUS-RIS-A2.2-E1 

deliverable, EEG and EDA were collected using BitBrain-E32.A1 and BitBrain-BIO.A1 equipment, 

respectively. Particularly, an EEG cap with 32 electrodes was used, and electrodes placed on the 

participant's forehead. For the EDA signal recording, the wearable, small-sized device was attached 

to two fingers of the hand’s participants, allowing mobility. The sampling rate used was 256 Hz. 

Parallelly, two different systems were used for HR and HRV recordings. For 2/3 of the scenarios (i.e., 

video streaming and LLM interaction), a photoplethysmography sensor was employed during the 

different tasks. For the remaining scenario (i.e., internet browsing), an electrocardiogram (ECG) 

system was employed, placing electrodes to the participant’s wrists and forearms.  
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The presentation of the tasks, questionnaires when required, and the sending of marks for 

the synchronization of the signals was performed using Psychopy2. The recording and 

synchronization of the psychophysiological signals was performed using OpenVibe3. The contents 

were displayed using a ViewSonic VX3276-2K- MHD-2 (32-inch) screen.  

 The EEG signal preprocessing was performed using the MNE package in Python 4. The steps 

followed included: (1) a band-pass filter (0.3 - 40 Hz) applied to eliminate slow drifts; (2) the Fpz 

channel was taken as EOG, necessary for the use of the algorithm below; (3) each signal was divided 

into 2 s epochs with 1 s of overlap; (4) the FASTER method (Nolan et al., 2010), based on ICA was 

used to automatically detect, reject and interpolate those epochs with excessively noisy data; and (5) 

finally, different EEG-based metrics were derived. These included Frontal Alpha Asymmetry (FAA) as 

an indicator of motivational arousal; Occipital Alpha (alpha_occ) to measure visual attention; Parietal 

Beta (beta_par) as a marker of negative emotional response; and Engagement Index for both Frontal 

(eng_index_front) and Parietal (eng_index_par) regions, as indicators of engagement. The EDA signal 

was processed using the cvxEDA algorithm (Greco et al., 2015). The algorithm enabled decomposing 

the signal into its tonic (EDA_tonic) and phasic (EDA_phasic) components. Finally, for the processing 

of the HR and the EMG signals, the Neurokit25 package in Python 4 was employed. It is worth noting 

that signals were divided into epochs with a duration of 1s, obtaining several measures per 

participant and task. Finally, the HR and HRV values were derived using AcqKnowlege software 

(Biopac). 

To complete each of the datasets, further behavioral subjective variables were asked to 

participants, including metrics for perception quality, attention, and enjoyment. All the collected data 

was fully anonymized to protect participants’ privacy, ensuring that no personally identifiable 

information was stored or could be traced back to individual participants. This process adhered to 

relevant data protection regulations and ethical guidelines.  

In the following subsections, specificities on the datasets and analyses conducted, and their 

results are presented for each of the datasets.  

2.2 Video streaming dataset 

First, as a representative dataset of the context of use of streaming audiovisual content 

consumption, the dataset collected in the pilot test reported in the deliverable SORUS-RIS-A2.2-E1 

"4.2.1 Definition of use cases and experimental paradigms (Video streaming)" has been used for the 

analysis. 
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2.1.1 Dataset 

This dataset includes data from 5 participants who were exposed to 5 videos of 4 minutes 

duration each, covering several themes, including sports, animation, musicas, and nature. The videos 

were presented with different latencies, synthetically introduced by means of a wrapper for 

Browsertime (https://www.sitespeed.io), which allowed to regulate latency and bandwidth. The 5 

levels of latency, counterbalanced in the different videos for the different participants, were as 

follows: Q1(29.64 ms); Q2 (54.54 ms); Q3 (152.31 ms); Q4 (253.95 ms); Q5 (658.34 ms), and Q6 

(1840.03 ms).  

In the meantime, psychophysiological signals were collected, and self-reported measures of 

subjective experience by the participants were collected after each video, namely: perceived quality 

(subjective), using a single stimulus continuous procedure (Duanmu et al., 2016); attentional focus 

(using three items; Busselle & Bilandzic, 2009); and enjoyment (three items, Oliver & Bartsch, 2010). 

Complete details on the experimental paradigm can be found in deliverable SORUS-RIS-A2.2-E1. 

2.1.2 Analyses and results 

The first part of the analysis involved exploring the correlations between the different 

multimodal signals, to establish to what extent they may provide redundant or complementary 

information about the user's psychological processes.  However, limited reliability was observed for 

the HR and EMG signals, primarily due to their sensitivity to participant movement during 

visualization tasks (see Section 3 for further details). As a result, these signals were excluded from 

subsequent analyses. As illustrated in Figure 1, the correlations among the remaining signals are 

generally low, suggesting a minimal level of collinearity. 

 

 

FIGURE 1. CORRELATION MATRIX FOR THE MULTIMODAL SIGNALS IN THE VIDEO STREAMING DATASET  
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Multilevel mixed models were then used to analyze the mapping between the set of 

psychophysiological signals and the subjective indicators of quality of experience in the different 

experimental conditions. An initial model was fitted for each subjective perception of experience 

variable, as outcomes of the model; based on the different psychophysiological signals as predictors. 

A second multilevel mixed model was then fitted in which additionally to the psychophysiological 

signals, the experimental latency was included as predictor. This approach allowed us to understand 

the extent to which the psychophysiological variables predict residual variations in user experience 

once the different latency levels are controlled. The results of these models are summarized in Tables 

1 to 3. 

Table 1. Summary of the models for subjective quality 

 Model 1 Model 2 Model 3 

(Intercept) 3.342 *** 3.163 *** 3.849 *** 

FAA 0.020 *** 0.020 *** 0.009 *** 

alpha_occ -0.010 ** -0.010 * -0.007 *** 

beta_par -0.016 *** -0.016 ** -0.004  
eng_index_par 0.052  0.057  0.024  
eng_index_front 0.000  -0.002  0.048  
EDA_tonic -0.033  -0.052  0.100 *** 

EDA_phasic 0.033 * 0.030 * -0.005  
order    0.049 * 0.025 * 

latency     -0.001 *** 

* p <.05; ** p <.01;  ***p<.001      

 

The coefficients of the Models for perceived quality (Table 1) indicate that both FAA (related 

to motivational arousal) and measures of frontal alpha (visual attention) and parietal beta (negative 

emotionality) display a statistically significant association with perceived quality (in a context in which 

all other cues and variables are controlled for). However, when controlling for the effect of latency, 

parietal beta no longer is a significant indicator, suggesting that the variability it explains could be 

attributed to latency. Thus, the cues that show the strongest statistically significant relationship 

across the different models may be the most effective predictors of user-perceived quality. In the 

case of attentional focus (Table 2) the only signal showing a statistically significant relationship across 

the three models is the tonic EDA signal. Thus, user-reported attention may be more difficult to 

predict from other signals, such as EEG. However, it is also important to consider here that it is 

possible that users could not reliably report their level of attention. Finally, in the case of the reported 

enjoyment (Table 3), this is mainly related to the occipital alpha signal, as well as to the EDA signals. 

This is consistent with theoretical conceptualizations of enjoyment as a psychological construct, in 

which it is related to levels of attention (indicated by the occipital alpha signal) and emotional arousal 

(indicated by the EDA). 
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Table 2. Summary of the models for attentional focus 

 Model 1 Model 2 Model 3 

(Intercept) 4.159 *** 4.298 *** 4.763 *** 

FAA 0.006  0.006  -0.001  
alpha_occ 0.000  0.001  0.003  
beta_par -0.010  -0.009  -0.001  
eng_index_par -0.098  -0.101  -0.124  
eng_index_front -0.028  -0.027  0.007  
EDA_tonic 0.119 *** 0.133 *** 0.237 *** 

EDA_phasic -0.011  -0.009  -0.033 * 

order    -0.038  -0.055 * 

latency     -0.001 *** 

* p <.05; ** p <.01;  ***p<.001     

 

Table 3. Summary of the models for enjoyment 

 Model 1 Model 2 Model 3 

(Intercept) 4.182 *** 4.936 *** 5.287 *** 

FAA 0.005  0.004  -0.002  
alpha_occ -0.013 ** -0.012 ** -0.010 ** 

beta_par -0.003  -0.001  0.005  
eng_index_par 0.035  0.018  0.001  
eng_index_front -0.043  -0.034  -0.009  
EDA_tonic 0.079 * 0.155 *** 0.233 *** 

EDA_phasic -0.055 ** -0.041 * -0.059 *** 

order    -0.208 *** -0.220 *** 

latency     -0.001 *** 

* p <.05; ** p <.01;  ***p<.001    

 

The next step, to go beyond the statistical inference approach, was to explore the predictive 

power of multimodal signals to predict the subjective values of quality of experience (in terms of 

perceived quality, attentional focus, and reported enjoyment). For this purpose, the Python package 

scikit-learn was used to generate a random forest model (random forest regressor) for each of the 

subjective variables (perceived quality, attentional focus, and reported enjoyment), and the 

psychophysiological signals were taken as predictors. The dataset was divided into training dataset 

and testing dataset (20% of the original), and 5-fold cross-validation was used. The metric used to 

assess the result was R2. The R2 values suggest that the combination of psychophysiological signals 

has considerable predictive power (Quality R2 = 0.64; Attention R2 = 0.66; Enjoyment R2 = 0.63), 

although the remaining unexplained variability suggests that there may still be considerable room 

for improving these predictions with the incorporation of other data sources or signals. 
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2.2 Language Model Responses dataset 

An analytical approach similar to that employed in the streaming video viewing dataset was 

carried out with a dataset collected in a laboratory interaction context between users and Large 

Language Models (LLM). 

2.2.1 Dataset 

To create this dataset, eight participants were asked to read and rate responses given by an 

LLM to a certain prompt. One of them performed the test in two sessions. To control the quality of 

the responses, prompts and user-rated responses available in the Open Assistant Conversations 

dataset (https://huggingface.co/datasets/OpenAssistant/oasst1) were used. For each participant, 

between 20 and 30 prompts were presented, and for each prompt, two responses previously 

annotated as best and worst quality, were offered consecutively. Each participant read the responses 

and rated them in terms of their quality and was also asked to rank them in order of quality. The 

psychophyisiological signals described above were jointly collected during the study. In order to 

analyze the impact of latency on the participant's subjective experience (i.e. their assessment of the 

quality of the responses), as well as on their cognitive and emotional response (i.e., assessed through 

psychophysiological signals), the different levels of latency introduced and recorded by the software 

in the presentation of the language model responses were analyzed. These latencies had values 

between 1 ms (values lower than this were adjusted to 1 ms) and 103 ms, with a mean of 19 ms and 

standard deviation of 16 ms.  

2.2.2 Analyses and results 

The analytical approach employed was similar to that described for the video steaming dataset. First, 

correlations between psychophysiological signals were explored (Figure 2), and then multilevel 

models were fitted for each subjective variable (Tables 4 and 5).  

 

FIGURE 2. CORRELATION MATRIX FOR THE MULTIMODAL SIGNALS IN THE LLM RESPONSES DATASET 
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As shown in Tables 4 and 5, none of the signals appears to be statistically significantly related 

to either the quality of the response reported by the participant or the ranking assigned to it. This 

occurs in all three models for each subjective variable (even when controlling for the effect of 

presentation order and latency). The reason for this may be that in this case we considered the signal 

averaged per response, rather than a time series of the signal per second as in the case of the 

streaming video dataset (so that many fewer samples per stimulus are available). It is also possible 

that, in this case, since the latency values were much lower than some of the conditions used in the 

previous dataset, they had no observable impact on the cognitive and emotional aspects of the user, 

as measured by the psychophysiological signals. 

 

Table 4. Summary of the models for response quality 

 Model 1 Model 2 Model 3 

(Intercept) 3.863 *** 4.030 *** 3.899 *** 

FAA -0.315  -0.314  -0.357  

alpha_occ 0.024  0.042  0.057  

beta_par -0.023  -0.044  -0.056  

eng_index_par -2.085  -2.881  -2.914  

eng_index_front 1.319  1.592  1.523  

EDA_tonic -0.057  -0.068  -0.064  

EDA_phasic -0.089  -0.101  -0.102  

order   0.007  0.010  

latency     6.886  

* p <.05; ** p <.01;  ***p<.001    

 

Table 5. Summary of the models for response ranking 

 Model 1 Model 2 Model 3 

(Intercept) 0.415  0.406  0.287  

FAA -0.019  -0.023  -0.036  

alpha_occ -0.006  -0.007  -0.004  

beta_par 0.007  0.009  0.008  

eng_index_par 0.013  0.075  0.163  

eng_index_front 0.149  0.121  0.167  

EDA_tonic -0.007  -0.007  -0.005  

EDA_phasic -0.006  -0.004  -0.001  

order   -0.001  0.000  

latency     1.936  

* p <.05; ** p <.01;  ***p<.001 
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Finally, a random forest model was implemented for each of the subjective variables, 

including reported quality and ranking. Twenty percent of the data was used as test dataset, and a 

5-fold cross-validation was conducted. As expected, in the view of the results of the previous 

multilevel models, in neither case was a relevant predictive capacity achieved (Quality R2 = 0.10; 

Ranking R2 = 0.15), which suggests that the capacity of these signals to predict these subjective 

variables is quite limited when simply considering the average signal per response, instead of 

considering the complete time series, as demonstrated in the previous case. 

2.3 Online search dataset 

A third context of use in which the mapping between multimodal psychophysiological signals 

and users' subjective perception was analyzed is online search. 

2.3.1 Dataset 

 In this case, a total of 19 participants were asked to search for different aspects in an online 

search engine. A client-side script was used to artificially manipulate the latency in the presentation 

of search results. Such introduced latency presented four distinct levels: 0 ms, 500 ms, 750 ms and 

1,000 ms. Then, each participant performed four tasks, with each of the latency levels. These tasks 

were presented in a random order, and varied among participants. The search tasks required 

performing as many queries as possible, within a list of web domains, and retrieve the URL associated 

with the results, within eight minutes per task. While participants performed the tasks, 

psychophysiological variables were recorded. In this case, we excluded EEG measures, focusing solely 

on peripheral nervous system signals to evaluate their standalone potential. This decision was driven 

by the goal of prioritizing signals that are more feasible to collect outside laboratory settings (cf. 

Tronstad et al., 2022) and in real-world environments. For instance, such signals can be captured 

using wearable devices on the wrist (e.g., the Empatica E4 wristband, https://www.empatica.com/en-

eu/research/e4/), while facial activity measures can be derived from camera recordings as a proxy for 

EMG measures (Inzelberg et al., 2018; Perusquía-Hernández et al., 2019). 

2.3.2 Analyses and results 

While some basic aspects of the analysis in this case are similar to those reported with the 

other two previous datasets (i.e., the sequence of exploring the correlations between the signals, 

performing multilevel models with a statistical inference approach, and ending with a prediction task 

using random forest), in this case there is some notable difference. In the absence of data on the 

subjective perception of the participants, we have chosen to focus on the mapping between the 

users' latency levels and the psychophysiological responses obtained. First, as in previous analyses, 

the correlations observed between the different psychophysiological signals are reported (Figure 3). 

As it is shown in the figure, there are certain correlations between the different signals, but these are 

limited in scope, which suggests that they may contribute to explaining diverse sources of variability 

in user experience.  
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FIGURE 3. CORRELATION MATRIX FOR THE MULTIMODAL SIGNALS IN THE ONLINE SEARCH DATASET 

 

In a succession of three multilevel models, we analyzed whether multimodal signals (tonic 

and phasic EDA, EMG facial, and HR) act as significant predictors of the observed latency in the search 

engine response. To this end, the values of these signals (sampled at 1 Hz) were analyzed within 

seven seconds after each of the searches. Three models were calculated, controlling successively for 

temporal order effects (order of presentation of the searches, and second -epoch- after performing 

the search). The results of the models, summarized in Table 6, show that both the tonic EDA activity, 

the facial EMG signal and the heart rate are significant predictors of the observed latency, indicating 

that they are affected by it. Moreover, with all three signals maintaining statistical significance in 

these models where all other signals are taken into account, this suggests that they capture different 

aspects of the user's experience (e.g., emotional arousal in the case of EDA, attentional responses in 

the case of HR, or negative valence of emotion in the case of EMG, cf. Rajendra Acharya et a., 2006; 

Bolls et al., 2019; Boucsein, 2012).  

 

Table 6. Summary of the models for the multimodal signals in the online search task 

 
Model 1 Model 2 Model 3 

(Intercept) 0.543 *** 0.546 *** 0.545 *** 

EDA_tonic -0.064 *** -0.063 *** -0.064 *** 

EDA_phasic -0.002  -0.002  -0.002  
EMG -0.175 *** -0.175 *** -0.175 *** 

HR 0.000 ** 0.000 ** 0.000 ** 

order   -0.001  -0.001  
epoch     0.000  
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Finally, a random forest model, similar to those described above (random forest regressor, 20% test 

set, five-fold cross-validation) was used to analyse the potential of these signals for predicting latency 

(in this case, given the absence of records of subjective ratings, it was decided to try to directly predict 

the latency observed in the tests). The results (R2 = 0.76) point to a considerable potential of these 

signals for predicting observed latency levels, and, consequently, to their usefulness for profiling 

users based on their response to latency.  

3. Reliability and robustness of the multimodal signals 

After the mapping of psychophysiological signals and the  values of subjective perception of 

latency, the next task described in Task 3 of the proposal focuses on the analysis of the reliability and 

robustness of the psychophysiological signals. Analysing the reliability and robustness of a signal 

involves assessing its consistency, accuracy, and resilience to noise or interference. There are several 

approaches that can be considered to evaluate the reliability and robustness of multimodal, 

psychophysiological signals like the ones considered in our tests. First, the most obvious option is to 

focus on the quality of the signal itself. Through visual inspection and spectral analysis - usually 

employed in psychophysiological analysis - artifacts, noise or distortions affecting the quality of the 

measurement can be identified. Other approaches in this regard include examining test-retest 

reliability (i.e., to collect multiple recordings of the same signal under similar conditions and compare 

them to assess the level of agreement between measurements, employing metrics such as intraclass 

correlation coefficient). One can also focus on the internal consistency of the signal (i.e., if the signal 

comprises multiple components or features, assess the internal consistency of these components), 

either consider the sensitivity of the signal, compare it to certain gold standards, or perform 

replication studies.  

Each of these approaches has certain advantages and disadvantages and presents certain 

requirements. When establishing our approach, we have considered the existing limitations in our 

project (e.g., the absence of gold standards in this specific field of latency response, the existence of 

limited studies and multiple conditions of use -which limits the performance of replication studies- 

as well as the high individual variability in these signals. Based on this consideration, we opted for a 

different approach depending on the signal analyzed to adjust to its characteristics.  

In the case of EEG signals, we have chosen to use an algorithm (FASTER; Nolan et al., 2010) 

for the automated detection of artifacts and noisy channels and epochs in the EEG signal, capable of 

automatically estimating the quality of the signal, based on an Independent Component Analysis. In 

the case of peripheral psychophysiological signals (i.e., EDA, facial EMG, HR), expert inspection has 

been chosen because, although some automatic techniques exist to detect poor quality 

psychophysiological signal segments, there is still no satisfactory automatic solution for all signals 

used, in various contexts. Therefore, visual inspection by experts is still considered one of the most 

effective systems (e.g., Kleckner et al., 2017).  In our case, this involved graphing each segment of the 

signal and visual exploration of these by an expert with over 10 years of experience in 



SORUS-RIS-A2.2-E2 22 

   

  

psychophysiological methods in an experimental context. Details on the reliability and robustness 

analyses for each signal and scenario are provided in the following sections. 

3.1 EEG signals 

As mentioned above, the analysis of the reliability and robustness of EEG signals was 

performed using the FASTER algorithm (Nolan et al., 2010). The algorithm produces an estimate of 

the signal quality of channels and epochs (i.e., segments) of the EEG signal. Then, based on statistical 

thresholds, it points out which channels and epochs present poor quality (e.g., excessive noise in the 

signal). This algorithm was applied to our two datasets containing EEG signals (i.e., the dataset 

collected while participants viewed streaming content with different latencies, and the dataset 

collected while participants interacted with large language models). 

3.1.1 Video streaming dataset 

From this dataset, EEG data were analyzed for four participants, who viewed six videos each 

(i.e., a total of 24 viewings) with a duration of 4 minutes each (i.e., a total of 144 minutes of EEG 

signal). The signal was collected using a wet/gel electrodes system, including 32 electrodes in 

positions according to the standard system. Each of the video signals was divided into 240 epochs 

of two seconds duration, with a one-second overlap. These epochs were analyzed using the FASTER 

algorithm.  

 

Table 7. Number of noisy channels and epochs per participant in the video streaming dataset 

Channels        

 video 1 video 2 video 3 video 4 video 5 video 6 M(SD) 

p1002 1 1 2 2 2 1 1.50(0.55) 

p1003 3 4 4 4 3 3 3.50(0.55) 

p1004 2 3 3 2 2 2 2.33(0.52) 

p1005 3 2 2 2 1 2 2.00(0.63) 

        

Epochs       

 video 1 video 2 video 3 video 4 video 5 video 6 M(SD) 

p1002 7 14 9 10 9 4 8.83(3.31) 

p1003 9 9 7 8 12 8 8.83(1.72) 

p1004 8 10 12 9 12 11 10.33(1.63) 

p1005 4 5 7 10 9 7 7.00(2.28) 
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As Table 7 shows, the number of channels and epochs the algorithm considers low quality or 

noisy is small. It ranges between 1 and 4 channels (out of 32; average 2.33, standard deviation 0.92) 

and between 4 and 14 epochs (out of 240; average 2.33, standard deviation 0.92). This suggests that 

the signal is robust enough to provide reliable results on most occasions. 

3.1.2 Large Language Model Responses dataset 

A similar analysis to that described above was carried out on the dataset concerning the 

interaction with LLM responses. In this case, the eight participants read and rated between 40 and 

120 responses provided by an LLM, with varying durations, from just a few seconds to more than a 

minute. As can be seen in Table 8, the results are broadly similar to those obtained in the previous 

test. The number of noisy channels is on average low, and something similar occurs with the number 

of noisy epochs: only between 1 and 5% of these are identified as having low quality. Therefore, it 

can be concluded that the EEG signal is sufficiently robust in this domain.  

Table 8. Summary of the automatic detection of bad channels and epochs in the LLM 

responses dataset 

Channels     

Participant 

Min. N bad 

channels 

Max N bad 

channels 

Mean (across 

responses) SD 

1 0 5 2.44 1.26 

2 0 2 0.68 0.62 

3 1 5 3.60 0.90 

4 1 6 3.20 1.22 

5 2 4 3.08 0.76 

6 2 6 4.00 0.78 

7 1 4 2.10 0.93 

8 2 5 2.93 0.76 

   

Average across 

participants  

   2.69 1.33 

Epochs     

Participant 

Total  

epochs Bad epochs Bad/Total  

1 2283 18 0.01  

2 678 7 0.01  

3 782 9 0.01  

4 1009 51 0.05  

5 633 16 0.03  

6 803 14 0.02  

7 500 6 0.01  

8 498 17 0.03  
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3.2 Peripheral physiology signals 

For the analysis of the peripheral psychophysiological signals a different approach was followed. 

Given the absence of a robust and reliable tool for an automated analysis, this approach relied 

primarily on expert inspection and quality assessment. Expert opinion, while subjective, remains the 

most reliable tool for this aim. In this case, an expert with over 10 years of experience in 

psychophysiological methods in an experimental context reviewed the collected signals. This analysis 

was applied to each of the peripheral signals recorded in the three different scenarios.  

3.2.1 EDA 

The first of these peripheral measures was EDA.  In the case of the video streaming dataset, the signal 

was processed employing the cxvEDA algorithm (Greco et al., 2015). The algorithm reduced noise 

present in the original signal. Subsequently, minimal evidence of noise was reported in the resulting 

signals by the expert. The same applies for the results on EDA signals for the Large Language Models 

Response dataset. See Figure 4 for further details. 

 

FIGURE 4. SAMPLE EDA SIGNAL, SHOWING THE ORIGINAL EDA SIGNAL (BLUE), THE TONIC COMPONENT 

(GREEN) AND THE PHASIC COMPONENT (RED). 

 

 In addition, the resulting EDA signal was also online search dataset was used, in which a 

different system (Biopac MP-150) was employed. In this dataset, the recording of the EDA signal was 

associated with times when users perform searches. The average of the phasic component of the 

EDA signal was calculated in the seconds after the searches were performed. In these seconds, it is 

expected to see a Skin Conductance Response, a momentary increase in EDA, which typically appears 

a few seconds after stimulus presentation (Dawson et al., 2007). This type of SCR response was 

common in the dataset, confirming that the signal responds reliably to the stimuli, as would be 

expected. 
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FIGURE 5. AVERAGE PHASIC COMPONENT OF THE EDA SIGNAL IN THE ONLINE SEARCH DATASET, 

FOR SEVEN SECONDS AFTER THE SEARCH    

3.2.1 EMG  

In the case of the EMG signal, our results suggest that the signals are more affected by noise than 

EEG in all datasets. Some of this noise is attributable to poor fixation of the electrodes on the 

participants' faces. See Figure 6 for further details. Filtering techniques were effective in removing 

some of these artifacts, although they were not successful in all instances. Therefore, the results 

suggest that the use of this signal requires expert supervision to ensure its quality, which could pose 

challenges in terms of cost and feasibility for analyzing user responses. 

 

FIGURE 6. SAMPLE OF EMG SIGNAL (RED), SHOWING LARGE PEAKS DUE TO NOISE    

3.2.2 HR  

In the case of the HR signal, this was obtained from a photoplethysmography sensor. The 

results suggest that the sensor is overly sensitive to the noise caused  by the participant's hand 

movements (Figure 7). Visual inspection by the expert showed that in many of the signals collected, 

noise and distortions were present and could not be corrected with a classic filtering approach.  
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FIGURE 7. HR SIGNALS FROM TWO PARTICIPANTS, SHOWING A GOOD QUALITY SIGNAL (UP), AND A VERY 

NOISY SIGNAL (DOWN))     

 

The poor quality of the HR signal affected up to one third of the samples collected in the 

video streaming dataset. These artifacts were not equally distributed across conditions and 

participants, unbalancing the experimental design, and making the use of this signal unfeasible in 

practice. Something similar happened to the HR signal collected in the LLM response dataset, 

limiting the utility of the data derived from this signal in this context. However, in the case of 

the online search dataset, a different system was used. Instead of using a photoplethysmography 

(PPG) sensor, an electrocardiogram (ECG) was performed by placing electrodes on the participant's 

wrists and forearm. The HR signal on this was then automatically computed using AcqKnowledge 

software (Biopac). The signal was analyzed by an expert, and those segments (downsampled to 1 Hz) 

that showed unrealistic values were eliminated. The result showed that about 98% of the samples 

provided signals of acceptable quality. This clearly indicates that the ECG-based system is much more 

reliable and robust than the PPG-based system, which provided a very low quality signal. 
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4. User profiles based on psychophysiological signals 

In section 4 of SORUS-RIS-A2.2-E1, a preliminary methodological approach was established for the 

profiling of users based on their response to latency in different network usage contexts. In essence, 

the proposed methodology was divided into two steps: 

 

1. First, individual sensitivity to system latency was assessed. Based on the literature review 

and the experimental results reported in the previous deliverable, sensitivity to latency has 

been shown to vary depending on the context and the latency ranges experienced within that 

context. Various approaches exist for reporting this sensitivity. For example, latency sensitivity 

can be defined in terms of subjective individual responses (e.g., perceptual quality reported 

at different latency levels). However, it can also be understood in a more comprehensive 

manner, as a function of the cognitive and emotional responses it induces, consciously or 

unconsciously, in the user. In the first deliverable, we followed the first paradigm, relying on 

self-reported responses. In this stage of the project, however, we focused on the second 

paradigm, utilizing psychophysiological signals to measure users' sensitivity to latency across 

the different contexts analyzed. 

2. Once a sensitivity value has been established for each user, the next step is to use these values 

to create user profiles and define distinct typologies based on their responses to latency. 

Following the experimental design explored in the first deliverable, techniques such as 

clustering or Latent Profile Analysis (LPA) methods (Spurk et al., 2020) were considered to be 

used for comparative purposes. However, although LPA may provide some advantages, such 

as the ability to accommodate partial membership to a given cluster, the method also 

requires a large number of participants. Given the complexity associated to collecting 

psychophysiological data, the number of participants in our experimental setting is low 

compared to the open, self-reported datasets used in the first deliverable. This makes the use 

of LPA unfeasible in our experimental context. By contrast, when using non-latent methods, 

e.g. k-means, power to detect clustering is primarily dependent on cluster separation, and 

much less on sample size (Dalmaijer et al., 2022). Therefore, in the analyses conducted in this 

section we only opted for non-latent approaches.  

 Regarding point 2, numerous non-latent clustering approaches have been proposed in the 

literature. As a result, it is neither straightforward to determine the best method for a specific dataset 

in advance, nor is it trivial to identify the optimal number of clusters in the profiling. Therefore, in 

this study we have taken advantage of the approach provided by the clValid package (Brock et al., 

2008) in R. This package allows, in a straightforward way, to compare multiple clustering algorithms 

and identify which performs best. It also enables exploring the optimal number of clusters.  
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In our case, three different methods were tested, including hierarchical clustering, k-means 

method, and Partitioning Around Medoids (PAM). In short, hierarchical clustering is a method 

that builds a hierarchy of clusters, allowing the researcher to visualize the data in a tree-like structure 

(i.e., dendrogram). It is particularly useful for discovering the structure of the data without needing 

to predefine the number of clusters. The k-means method, on the other hand, is a popular technique 

that partitions the data into a predefined number of clusters, aiming to minimize the variance within 

each cluster. It is efficient and well-suited for large datasets but requires the user to specify the 

number of clusters beforehand. Finally, Partitioning Around Medoids (PAM) is similar to k-means but 

uses actual data points (medoids) to represent the clusters, making it theoretically more robust to 

noise and outliers. Testing these three methods provides a comprehensive approach, allowing us to 

assess diverse ways of structuring the data and compare their effectiveness in identifying meaningful 

user profiles in our context. 

The proposed package also provides internal validation measures, which evaluate the 

quality of the estimated clusters based on intrinsic properties of the data. Other validation methods 

are also provided by the package, but not discussed here. The internal measures that we specifically 

explored are, on the one hand, a connectivity measure that indicates the degree of connectedness 

between clusters, based on k-nearest neighbors. The method ranges such a connectivity between 0 

and infinity, and the objective is to minimize this value. On the other hand,  average Silhouette width 

and Dunn index, were also tested. These metrics were designed to evaluate the quality of clusters. 

In particular, the Silhouette width ranges from -1 to 1, and it measures how well each point is 

clustered. It considers both cohesion (closeness within the same cluster) and separation (distance 

from other clusters). A higher score indicates better clustering. The Dunn index, ranges from 0 to 

infinity, and measures the separation between clusters and the compactness within clusters. A higher 

value means better separated and more distinct clusters. 

The profiling results for each dataset are presented in the following subsections. 

4.1 User profiling with the video streaming dataset and the LLM interaction 

dataset 

Given the costs associated with collecting psychophysiological measures, studies that include 

such data typically involve a small number of participants. To analyze existing profiles, we aimed to 

identify clusters of participants based on their psychophysiological responses to latency. We 

combined two datasets: one from video streaming, which includes data from five participants, and 

one from LLM interaction, which includes data from eight participants. Considering these two 

datasets together is appropriate, as they both involve passive tasks and utilize the same set of EEG 

and peripheral psychophysiological signals. This comparison is meaningful, especially when 

contrasted with interactive tasks (such as the online browsing task), where we hypothesize that the 

impact of latency may differ significantly (Doherty & Sorenson, 2015). 
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We used the datasets to analyze whether different clusters can be identified according to 

their sensitivity to latency, expressed in terms of the impact of latency on multimodal signals. Based 

on the results collected in section 2.1; the most suitable multimodal signals for this purpose were the 

FAA, Alpha occipital and beta parietal signals, as well as the phasic EDA signal.  

Following the methodological approach explained above to calculate the individual sensitivity 

to latency, the average value of each signal during the viewing of each video was calculated for each 

participant. Then, the correlation between the latency values and those of each signal per participant 

was calculated, and the probability values (p-value) associated with this correlation. This data was 

used to perform step two, the exploration of the emerging clusters. Table 9 and Figure 8 below show 

the results of this analysis.  

 

Table 9. Results of the cluster validation analysis (video streaming and LLM interaction 

datasets) 

  n-clusters 

  2 3 4 5 6 7 8 9 

hierarchical Connectivity 3.28 6.38 14.74 18.20 19.77 24.22 27.21 30.08 

 Dunn 0.66 0.74 0.65 0.65 0.65 0.65 0.74 0.91 

 Silhouette 0.26 0.25 0.12 0.09 0.06 0.10 0.09 0.08 

kmeans Connectivity 9.58 6.38 17.68 22.66 22.79 26.74 28.83 31.08 

 Dunn 0.45 0.74 0.54 0.58 0.60 0.77 0.83 0.92 

 Silhouette 0.22 0.25 0.11 0.11 0.12 0.14 0.12 0.11 

pam Connectivity 10.25 13.32 16.15 19.44 22.65 24.22 27.21 29.21 

 Dunn 0.42 0.51 0.57 0.57 0.65 0.65 0.74 0.74 

 Silhouette 0.08 0.07 0.08 0.07 0.11 0.10 0.09 0.06 

 

Optimal Scores:    
 

Score Method Clusters 

Connectivity 3.28 hierarchical 2 

Dunn 0.92 kmeans 9 

Silhouette 0.26 hierarchical 2 
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As the results indicate, both the validation based on connectivity and the Silhouette method 

converge in identifying the hierarchical clustering with two clusters as providing the best results. 

 

 

 

FIGURE 8. GRAPHICAL REPRESENTATION OF THE INTERNAL VALIDATION METHODS FOR DIFFERENT 

NUMBERS OF CLUSTERS IN THE VIDEO STREAMING AND LLM INTERACTION DATASET     

 

Thus, hierarchical clustering, with two clusters was employed in this study, using a dissimilarity 

matrix based on Euclidean distance.  Subsequently, the mean values of each of the measures per 

defined groups were evaluated. The results are shown in Figure 9, with the descriptive statistics for 

these two clusters presented in Table 10 and Figure 10. 
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FIGURE 9. GRAPHICAL REPRESENTATION OF THE CLUSTERING SOLUTION: DENDROGRAM (LEFT) AND 

VISUAL REPRESENTATION IN TWO DIMENSIONS (VIDEO STREAMING AND LLM INTERACTION DATASETS)     

 

Table 10. Cluster statistics (video streaming and LLM interaction datasets)  
 

FAA Alpha occ. Beta par. EDA phasic 

Cluster Pearson r p-value Pearson r p-value Pearson r p-value Pearson r p-value 

1 -0.08 0.55 -0.12 0.46 -0.08 0.46 -0.05 0.49 

2 -0.44 0.43 0.06 0.30 -0.28 0.36 0.80 0.06 

 

 

FIGURE 10. CORRELATIONS BETWEEN CLUSTERS’ COMPONENTS (VIDEO STREAMING AND LLM 

INTERACTION DATASETS)     
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These results suggest that the main difference between the two clusters is in the phasic 

responses of electrodermal activity: the larger group of participants shows more consistent 

responses, as suggested by the high correlation coefficient and low p-value, whereas the minority 

group lacks such responses. Thus, the main difference between participants in their response to 

latency seems to be in terms of the emotional arousal they produce: one could distinguish between 

a group sensitive to latency and one that is not, and one could, in principle, discriminate between 

the two on the basis of the emotional arousal that latency produces. However, it is important to note 

that the group with lower sensitivity to latency consists of only a small number of users. Therefore, it 

would be beneficial to replicate these results with larger sample sizes in future studies. 

4.2 User profiling with the online search dataset 

In the case of the online search dataset, a similar strategy was followed. First, the correlations 

and p-values of these between the latency values of each search and the tonic EDA, EMG, and HR 

values were calculated. Again, these signals were selected according to their statistically significant 

relationship with latency, as shown in section 2.3. Next, the clValid package in R was used to explore 

the three clustering methods proposed (i.e., hierarchical, k-means, and PAM), to define the optimal 

number of clusters (values examined between 2 and 8), and using internal validation methods. The 

results of this exploration process are reflected in Table 11 and Figure 11.  

 

Table 11. Results of the cluster validation analysis (online search dataset) 

  n-clusters 

  2 3 4 5 6 7 8 

hierarchical Connectivity 3.33 8.18 15.65 16.58 22.18 24.88 31.23 

 Dunn 0.58 0.35 0.46 0.46 0.55 0.55 0.51 

 Silhouette 0.28 0.23 0.29 0.26 0.27 0.25 0.25 

kmeans Connectivity 11.55 13.21 15.65 16.58 27.47 30.17 31.23 

 Dunn 0.32 0.42 0.46 0.46 0.48 0.48 0.51 

 Silhouette 0.28 0.31 0.29 0.26 0.27 0.26 0.25 

pam Connectivity 7.46 11.57 21.58 23.89 26.34 28.99 31.69 

 Dunn 0.31 0.41 0.33 0.33 0.42 0.42 0.42 

 Silhouette 0.29 0.31 0.24 0.24 0.23 0.26 0.23 

 

Optimal Scores:   
 Score Method Clusters 

Connectivity 3.3317 hierarchical 2 

Dunn 0.576 hierarchical 2 

Silhouette 0.3113 pam 3 

 

 



SORUS-RIS-A2.2-E2 33 

   

  

 

 

 

FIGURE 11. GRAPHICAL REPRESENTATION OF THE INTERNAL VALIDATION METHODS FOR DIFFERENT 

NUMBERS OF CLUSTERS IN THE ONLINE SEARCH DATASET     

 

The connectivity and Dunn validation methods agree that the best solution in this case - as 

in the previous case - is to apply a hierarchical clustering method, defining two clusters. Thus, this 

method was applied to the observations of the 19 participants in this study, using a dissimilarity 

matrix based on Euclidean distance. As can be seen in the graphical representation of the results 

(Figure 12), a larger cluster is described (approximately 2/3 of the cases) and a second smaller cluster, 

which also contains an apparently larger dispersion of the different values.  

In the statistics of the different components of both clusters, we see that one of the groups 

seems to have a pronounced and clear response (higher values in the correlations) to the latency 

present in the searcher responses. This is evidenced in positive correlation values in tonic EDA, 

negative correlation in HR (which is compatible with an attentional orienting response) and increased 

facial EMG (which was measured in the corrugator supercilii, thus indicating negative valence of 

emotions). All this contrasts with negative or closer to zero values presented by the other group, 

which indicates a lower sensitivity (lower arousal and negative responses) to latency in the searcher.  
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FIGURE 12. GRAPHICAL RESPRESENTATION OF THE CLUSTERING SOLUTION: DENDOGRAM (LEFT) AND 

VISUAL REPRESENTATION IN TWO DIMENSIONS (ONLINE SEARCH DATASET)     

 

Table 12. Cluster statistics (online search dataset) 

 EDA tonic HR EMG 

Cluster Pearson r p-value Pearson r p-value Pearson r p-value 

1 0.202 0.112 -0.097 0.165 0.421 0.126 

2 -0.225 0.148 0.028 0.078 -0.390 0.040 

 

 

 

FIGURE 13. CORRELATIONS BETWEEN CLUSTERS’ COMPONENTS (ONLINE SEARCH DATASET)     
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5. Conclusions 

 Building upon the results presented in the previous deliverable, Task 3 of SORUS-RIS-A2.2-

E2 ('Mapping Psychological Constructs to Low- and High-Level Indicators and Generating User 

Profiles') was addressed in this phase. In prior tasks, key psychological concepts related to latency 

perception and its impact on users were identified, along with available methodological approaches 

for their measurement. Initially, in SORUS-RIS-A2.2-E1, user profiling was conducted using self-

reported metrics. However, a pilot study indicated that combining self-reported subjective measures 

with psychophysiological data was particularly valuable for more accurately identifying distinct user 

profiles. As a result, this phase focused on conducting a more comprehensive analysis of 

psychophysiological measures for detecting latency, in conjunction with self-reported metrics. For 

this aim the construction of appropriate datasets in different scenarios was of s. Additionally, the task 

aimed to assess the reliability and robustness of each signal considered. Finally, based on the 

extracted signals and behaviours, the task sought to generate more complete user profiles based on 

their responses to the system's technical performance, with particular emphasis on latency, across 

various contexts. The general conclusions drawn from each of these subtasks during this second 

period are presented below. 

The first objective of this activity was to analyse the relationship between multimodal 

psychophysiological cues and the perception and subjective impact of latency on users across 

different contexts of real-world services. The results suggest that in less active usage scenarios, such 

as watching online videos or reading responses generated by language models, the effects of latency 

are primarily reflected in changes related to user motivation (as seen in frontal alpha asymmetry - 

FAA - in the EEG), visual attention (occipital alpha), negative emotion (parietal beta), and emotional 

arousal (phasic EDA). However, when variations in latency are minimal, correlations between 

multimodal indicators and users' self-reported responses become less consistent, indicating that the 

impact of latency is not as easily perceived in such conditions. In more interactive environments, such 

as online browsing, the connection between latency levels and psychophysiological signals is more 

evident. Here, latency has a more noticeable impact, with clear relationships observed between the 

latency and signals such as EDA, EMG, and HR, indicating a more robust and reliable mapping 

between the two. 

In the second part of the analysis, the reliability and robustness of the psychophysiological 

signals used in the study were thoroughly evaluated by an expert to assess their potential as reliable 

indicators for the research methodology. The findings suggest that both EEG and EDA signals 

demonstrate sufficient robustness, making them effective tools for addressing the research 

objectives. Specifically, the EDA signal stands out due to its ease of use and its potential for 

integration into wearable devices, highlighting its promising applicability in future research and real-

world contexts. 
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However, the analysis of the EMG signal revealed frequent segments with noise, which were 

likely caused by electrode movement during the experimental sessions. This finding underscores the 

importance of reviewing EMG data carefully, with expert oversight, to ensure its reliability before 

being used in further analysis. In light of these challenges, alternative approaches could be 

considered to complement or replace EMG measurements. For instance, detecting facial expressions 

through camera-based systems could offer a non-intrusive and reliable way to assess emotional and 

cognitive responses. Techniques such as facial action coding systems (FACS) or computer vision 

algorithms could be used to analyse facial muscle movements, providing valuable insights into user 

reactions without the need for physical sensors. These methods could serve as a potential solution 

for reducing the impact of noise and improving the overall reliability of psychophysiological 

measurements, especially in cases where traditional sensors may be prone to interference. 

Regarding the HR signal, the electrocardiogram (ECG)-based system provided reliable results, 

in contrast to the photoplethysmography (PPG)-based system, which exhibited less consistent 

performance. As a result, the ECG-based system is recommended for future use due to its superior 

reliability in capturing heart rate data. 

Finally, the third objective was to establish user profiles according to their response to latency, 

understood as the impact of latency on different psychophysiological indicators, which are 

associated with cognitive and emotional processes. The results obtained from this task indicate that 

the sets of users examined can be categorized into two distinct groups. One of them comprises those 

users who show a greater sensitivity to latency, while the other includes those who do not seem to 

react in a clear cognitive or emotional way to this factor. This sensitivity manifests itself in diverse 

ways depending on the context: in the form of physiological EDA responses (emotional arousal) in 

the more passive use cases (e.g., watching videos or reading LLM responses), and in EDA, EMG, and 

HR responses in more interactive use cases (performing online searches). 

To identify these user profiles, several clustering methodologies were tested, including 

hierarchical clustering, k-means, and Partitioning Around Medoids (PAM). Among these, hierarchical 

clustering with two clusters provided the best results, clearly differentiating between the two groups 

based on their latency sensitivity. This approach, combined with an evaluation of various 

psychophysiological indicators, proved to be an effective method for profiling users according to 

their responses to latency, allowing for the identification of distinct user typologies that can inform 

more personalized service offerings in the future 

In summary, this phase of the project successfully expanded upon the initial profiling work 

by integrating psychophysiological data with self-reported subjective measures to improve the 

accuracy of user profiles. The analysis not only clarified the impact of latency on user experience 

across various contexts but also validated the reliability of the signals used, with promising results 

for the use of EDA and EEG signals in future research. Furthermore, the generation of user profiles 

based on psychophysiological responses lays the foundation for developing more personalized and 

context-sensitive services that can adapt to individual user needs and preferences in real-world 

scenarios. This approach offers valuable insights for enhancing user experience, particularly in 
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latency-sensitive environments. Additionally, the methodological advancements made in this phase 

underscore the potential for continued exploration of multimodal psychophysiological data, 

promising further improvements in understanding user behaviour and refining interactive 

technologies for diverse user groups. 
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