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Resumen Ejecutivo 
 
Este informe presenta el entorno utilizado para medir el consumo energético de smartpho-
nes, basándonos en la arquitectura de Battery Labs (https://batterylab.dev/) (Varvello, 2022). 
Principalmente utilizaremos tres componentes: 

i) Controlador, que será el encargado de comunicarse con el dispositivo que se quiere 
testear (es decir el smartphone), el controlador puede ser una laptop o dispositi-
vos de poco peso como Raspberry Pi (Raspberry Pi Ltd, 2019) 

ii)  Medidor de energía: este es un hardware que medirá la corriente consumida por el 
dispositivo que se este testeando. Actualmente batterylab solo soporta Monsoon 
HV (monitor., 2024)  

iii) Dispositivos de prueba, en nuestro caso haremos mediciones con dos dispositivos 
el Google Pixel 4 y el Google Pixel 5. 

 

Tras describir el entorno, nos enfocaremos en analizar las tecnologías de acceso a radio (3G, 
4G, 5G y Wifi) y su impacto en el consumo energético. Luego, detallaremos los experimentos 
planificados para el próximo entregable. Finalmente, desde la perspectiva de Telefónica 
como proveedor de conectividad, exploraremos el ahorro energético de las estaciones base 
al entrar en diferentes patrones de suspensión – los resultados de las estaciones base 
concreto se detallarán en el entregable 3. 

 

Es importante destacar que el resto del documento está redactado en inglés para maximizar 
el impacto del proyecto. 

 

 
 
 
 
 
 
 

https://batterylab.dev/
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Abstract 
 

This report introduces the environment used to measure the energy consumption of 
smartphones, based on the architecture of Battery Labs (https://batterylab.dev/) (Varvello, 
2022). We will primarily utilize three components: 

i) Controller: responsible for communicating with the device under test (i.e., the 
smartphone). The controller can be a laptop or lightweight device like Raspberry 
Pi (Raspberry Pi Ltd, 2019). 

ii) Power meter: hardware that measures the current consumed by the device being 
tested. Currently, Battery Lab only supports Monsoon HV (Monitor, 2024) 

iii) Test devices: in our case, measurements will be conducted using two devices, 
Google Pixel 4 and 5. 

 

After describing the environment, our focus will shift to analyzing radio access technologies 
(3G, 4G, 5G, and Wi-Fi) and their impact on energy consumption. Subsequently, we will 
outline the planned experiments for the upcoming Deliverable 2. Finally, from Telefónica's 
perspective as a connectivity provider, we will explore the energy-saving mechanisms of 
base stations when entering different suspension patterns. These results will be presented 
in Deliverable 3. 

 

It is essential to note that the rest of the document is written in English to maximize the 
project's impact.   
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1. Introduction 
In this document, we report the need for measuring the power consumption of smartphones. 
The work leverages the learnings from the battery lab community, in particular the hardware 
tools and software stack used by them, however, given the in-house expertise, we are the 
ones designing and performing the experiments and will not use the APIs provided by the 
battery lab community – i.e., no third party will be performing the experiments. 
 

Besides describing the setting and platforms used to carry on the experiments. A secondary 
objective of this report is to educate on the efforts that other researchers have made to 
understand and optimize the energy consumption of smartphones. This report is in part an 
up-to-date replicability study that considers four (4) different RATs, namely 3G, 4G, 5G, and 
Wi-Fi, hence, we briefly explain such technologies. Moreover, the report describes the most 
popular application domains, namely the type of application commonly found on nowadays 
smartphones. This type of measurement is fundamental for bringing awareness of the 
current state of energy efficiency on smartphones and allows other researchers to use its 
learnings to design and develop new techniques that improve the current state. 
 

The structure of this report is as follows. Section 2 describes efforts made by the academy 
and industry to understand and optimize the power consumption of smartphones.  Section 
3 describes the environment, hardware, and software tools, used to perform our experi-
ments. Section 4 describes the set of RATs that will be considered in subsequent measure-
ments and will give a brief review of the design trade-off between performance and energy 
consumption on each RAT. Section 5 describes the application domains and within each 
domain the application types that will be assessed in future deliverables. Section 6 describes 
the energy consumption from the side of the telco operator, i.e., we will describe power 
savings strategies from the telco operator; real-world results for different tests will be pre-
sented in future deliverables. Section 7 presents the experiments that will be performed for 
the next deliverable. Finally, Section 8 summarises and concludes the report. 
  

2. Energy consumption on smartphones 
Smartphones’ main characteristic is mobility and the main limitation with mobile devices is 
that they cannot be permanently attached to an energy source -opposite to fixed devices 
such as fridges, dishwashers, etc.-, making power consumption a critical resource for mobile 
computers. In the last decade, there have been numerous efforts both from academia and 
industry to make smartphone applications and operating systems (OS) energy efficient. 
Academic efforts include characterizing and detecting energy bugs (Abhinav Pathak Y. C., 
2011) (Abhilash Jindal, 2013), building power models of mobile hardware (Junxian Huang, 
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2012),  building fine-grained energy profilers (Abhinav Pathak Y. C.-M., 2011), building 
energy-aware OS abstractions (Arjun Roy), and energy-aware app adaptation, e.g., video 
adaptation (Jiayi Meng, 2021), etc. Industry efforts originated primarily from OS developers 
such as Google and Apple and hardware manufacturers such as Intel and Qualcomm. These 
efforts include running automated static analysis checks to catch common energy bugs 
(checks., s.f.), providing battery drain diagnostic tools (Historian., s.f.), and increasing 
awareness of battery-conscious software design (performance, 2019).  

Most recently Patterson et. al. (Patterson, 2024), explored the energy and carbon emissions 
of smartphones in comparison to Google’s cloud data center. The results showed several 
inefficiencies in smartphones at different levels, e.g., smartphone charges are hugely 
inefficient, particularly wireless charges. This inefficiency is presented on ’vampire power’ 
namely power consumed by the charger when no smartphone is plugged in, but also on 
maintenance power, namely power consumed to keep the smartphone 100% charged. 
Moreover, they also showed that, at least for machine learning (ML) applications, the carbon 
footprint of creating a distributed ML model using computation from smartphones can be 
100X bigger than that of creating the same model in a centralized cloud location, hence, 
emphasizing that the need for privacy from the user’s perspective can have a big impact on 
the environment.  

Despite all this effort, there have not been many measurement studies, in particular studies 
that take a broader view in terms of RATs and popular application types (e.g., web browsers, 
social media, video streaming). Narayanan et al., (Arvind Narayanan, 2021) conducted an in-
depth measurement of the performance, power consumption, and application quality-of-
experience (QoE) of commercial 5G networks in the wild, they focused on both Non-
standalone (NSA) and standalone (SA) schemes, mobility patterns, different user equipment 
and studied different applications (file downloaded, video streaming and web browsing). 
Although their focus is on 5G, they performed some comparisons between 4G and 5G, their 
results suggest that 5G is more power-hungry than 4G, thus, portraying that the 
performance benefits obtained with 5G technologies have a direct cost in the energy 
consumption of the end device. Previous work studied older RAT technologies like 4G 
(JunxianHuang, 2012) and found similar trends, namely older RATs are less performant but 
also more power-hungry. 
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3. Hardware and software power measurement setup  
3.1 Power measurement setup methodology 
In our pursuit to measure the energy consumption of smartphones, we conducted 
experiments utilizing the architecture of Battery Labs (https://batterylab.dev/) (Varvello, 
2022). These experiments intricately involved a combination of hardware components 
working in concert to generate comprehensive energy consumption data. 
 

Figure 1 illustrates the interaction scheme among each hardware element, offering a visual 
representation of the interplay involved in the data collection process. This scheme serves 
as the backbone for capturing precise power consumption metrics.  
 

 
FIGURE 1 Data collection methodology for battery lab in power consumption measurements. 
 

The data collection methodology, depicted on the left side of Figure 1, unfolds as follows: 

1) Raspberry Pi 4 (Processor Unit) 
i) The Raspberry Pi communicates with the Monsoon and the researcher 

establishes the nominal voltage for each of the devices. 
ii) Simultaneously, as the smartphone initiates automated tests, the Raspberry Pi, 

acting as a controller, executes the data collection script within the defined 
timeframe. The Raspberry Pi stores the gathered data, including timestamp, 
current, and voltage, in CSV format, which the Monsoon measures from the 
device. 

2) Monsoon (Power Measurement Device) 

Hardware test embedded system

Monsoon Device
Laptop

Delivers Voltage

Collect the
current used and
Voltage delivered

Set Monsoon Voltage delivered to deliver & run data collection script 

Sends back the collected energy consumption data

Raspberrry
Pi  4

Acces to
Raspberry Pi to

get collected data

Data Analysis

Runs diferents
workloads using

MacroDroid under
Test

https://batterylab.dev/
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i) Once the Raspberry Pi sets the voltage, the Monsoon delivers the voltage to 
the device. 

ii) The Monsoon collects the delivered voltage and the current received from the 
Device Under Test at a sampling frequency of 1923 Hz, sending this data to 
the Raspberry Pi. 

3) Device (Device Under Test - Smartphone) 
i) The Device receives the nominal voltage specified by the Raspberry Pi via the 

Monsoon. 
ii) The Device executes automation UI using the MacroDroid app, running 

different workloads for each test. 
4) Laptop (Isolated from the experimental setup) 

i) Laptop is utilized to access the Raspberry Pi via the Raspberry Pi WiFi network 
and retrieve the collected CSV test data. 

ii) The laptop conducts preprocessing and data analysis from each test. 
 

In Figure 2, we present the three main components constituting our experimental setup. 
These components are integral to the power measurement process: 

1. Smartphone (Device Under Test): This represents the target device whose energy 
consumption we are assessing. 

2. Monsoon (Power Measurement Device): Acting as our power measurement tool, 
Monsoon plays a crucial role in accurately gauging and recording power consumption 
values. 

3. Raspberry Pi (Processor Unit): This component functions as the processor unit 
responsible for capturing and processing power consumption values, adding an 
additional layer of precision to our measurements. 
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FIGURE 2: Testbed used with the various components. 

 

3.2 Embodiment of the methodology  
Two Android smartphones—specifically, Google Pixel 4 (Google, 2019) and Google Pixel 5 
(2020) — were employed, and both devices were wired bypassed, and connected to a power 
collector. As a power collector, a Monsoon HV Power Monitor (monitor., 2024) is used. 
Raspberry Pi 4 Model B (Raspberry Pi Ltd, 2019) is used as the controller responsible for the 
communication interface with the power collector. Data analyses were conducted using an 
Apple MacBook Pro M1 laptop (Apple Inc., 2020).  
 
Additionally, three SIM cards from diverse operators (Movistar, Vodafone, and Yoigo) were 
utilized during testing.  We aimed to assess the influence on power consumption between 
these three operators, note that such operators were selected because together they 
account for more than 50% of the market in Spain (Statista, 2024). 

 
 

Monsoon
(Power Measurement Device)

Smartphone (Device Under Test):

- Google Pixel 4 (Top)

-Google Pixel 5 (Right)

Raspberry Pi (Processor Unit)
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The software stack used is as follows: 
1) Smartphones Operating System  

i) Android 12.0 (Android, 2021) has been used in both smartphones. To isolate 
and avoid the OS influencing the consumption results, the same compatible 
version has been chosen for both devices. The version OS is chosen as the 
minimum version compatible for both smartphones. 

 
ii) Both phone OS have been rooted, allowing to have access to modify OS 

software code. Rooting the devices has been required to obtain privileges for 
automation tasks that need deep access to the system to perform test 
automation. 

 
2) Test Automation App 

MacroDroid App (Arlosoft, 2012) is used to perform test automation. The app is an 
automation and task configuration app for Android. It allows users to create macros, which 
are sequences of actions that can be triggered by various events. In this context, MacroDroid 
is used for UI automation testing on smartphones. UI automation involves simulating user 
interactions with the device to perform specific tasks, helping to assess power consumption 
under various scenarios. 
 

3) Battery Lab Controller OS 

GNU/Linux OS (Free Software Foundation (FSF), 2008) is running within Raspberry Pi 4 Model 
B (Raspberry Pi Ltd, 2019). The controller OS has been used for communicating with 
Monsoon and for running data collection scripts, acting as a main controller for Battery Lab. 
This controller is responsible for capturing and collecting data related to power 
consumption. The Raspberry Pi, being a versatile single-board computer, can be configured 
within the GNU/Linux OS for various tasks, and in this case, it serves as a data collection 
endpoint. 
 

4) Preprocessing and Data Analysis Programming Language  

For our purposes, we used Python 3.9 (Python Software Foundation, 2020) for pre-
processing and data analysis. Python, with its extensive libraries and tools, is a popular choice 
for scientific computing and data analysis. It allows for efficient handling of data collected 
from the smartphones and the Battery Lab. 
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3.3 Limitations and measurement issues 
A comprehensive understanding of the intricacies within any experimental setup is essential 
for accurately interpreting results and making informed experimental decisions. In this 
regard, addressing the limitations and measurement challenges arising from our setup 
becomes imperative. 
 

The primary drawback of our trials stems from the necessity to bypass smartphones to 
connect them to the Monsoon power monitor terminals (monitor., 2024), as depicted in 
Figure 3, requiring intervention in the device. This modification involves extracting the 
battery and soldering the terminals to the points where the device's battery is typically 
connected. Consequently, this restricts the device's mobility as it remains connected to the 
setup, rendering it unusable for other purposes. 
 

 
FIGURE 3: Google Pixel 4 smartphone modified with wired bypass for testing. 

 

Bypassed smartphones encounter challenges during the initial startup, demanding dual 
charging points (from both the power meter supplying voltage and a USB Type-C charger 
connected to the charging port) for the device to power on. This startup process is time-
consuming as the Monsoon, connected to the smartphone’s nominal voltage, is unable to 
initiate itself. The USB Type-C charger supplements the power supply, but it limits usage, 
and the smartphone is prone to shutting down if moved or if the charger is disconnected 
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prematurely. 
 

After the initial startup, the USB Type-C charging cable connected to the charging port is 
removed to avoid interference with the trials. It has been observed that any connected 
element during data collection, such as the USB Type-C charging cable, hinders the 
collection of consumption data. If any element is connected, the analysis is compromised, 
resulting in abnormal and altered consumption values. 
 

This limitation also restricts the use of Android ADB (Android , 2023) via USB for test 
automation. Moreover, utilizing Android ADB (Android , 2023) over WiFi poses challenges 
as it introduces increased power consumption and has the potential to impact trial 
outcomes. Transmitting execution and automation commands over WiFi not only 
compromises results but also makes it difficult to distinguish between power consumption 
related to the test itself and that caused by receiving ADB commands through WiFi. This 
limitation further confines us to consistently use WiFi for command transmission, restricting 
the diversity of tests and the utilization of various RATs isolated such only using 3G/4G/5G. 
 
As a possible solution, tools provided by the Android developer OS, including Android 
Batterystats and Android Battery Historian (Android, 2020), enable the retrieval of energy 
consumption and smartphone status data over a specified time period. However, the data 
from the Android Development Battery Historian tool is not consistently accurate over time, 
as illustrated on the left side of Figure 4. While useful for obtaining an overview of energy 
consumption trends, this tool is primarily employed by app developers for general insights 
during app development or updates. 
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FIGURE 4: Left side - android developer tool, battery historian graph showing insufficiently detailed data 
for accurate energy consumption analysis. Right side - battery lab tool - energy consumption collected from 
one of our tests. 
 

Considering our objective of analyzing energy consumption data for meaningful 
conclusions, Battery Lab proves to be more suitable. With Battery Lab, we can collect 
accurate data, as demonstrated on the right side of Figure 4. 
 

Another limitation arises from the significant influence of external and internal factors on 
device consumption. Actions such as touching the screen or receiving notifications during 
trials impact consumption due to the numerous sensors and internal processes of the 
smartphone. 
 

Therefore, the isolation of trials and replication to the extent possible has been crucial in 
overcoming this limitation, serving as the primary rationale for utilizing this setup. 
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4. Radio access technologies and power consumption 
In this work, we specifically focus on studying the power consumption of user devices such 
as smartphones, while performing different tasks and activities and utilizing different radio 
access technologies (RATs) for network connectivity. Therefore, next, we discuss further 
power consumption per connectivity (we focus on 3G, 4G and 5G), and how this 
consumption compares with the typical WiFi connectivity. 
 

4.1 Cellular connectivity 
1G offered basic analogue calls and then 2G offered digital communications and SMSs. 
Moving into 3G, this technology introduced mobile data applications and was the first to 
bring mobile broadband internet to consumers. Later, 4G/LTE networks provided significant 
improvements in data speeds, latency, and efficiency compared to 3G (htt20). Therefore, 
4G/LTE could support high-speed internet access, low-latency communications, and thus 
paving the way for applications like video streaming and online gaming (htt201). In theory, 
power consumption on user devices was expected to decrease compared to 3G, mainly due 
to advancements in technology such as more efficient modulation techniques and better 
network optimization. However, in practice, power consumption on user devices using 3G 
or 4G varies depending on factors such as signal strength (connected to distance from the 
antenna, weather conditions, obstructions, etc.), and data usage. 
 
Finally, 5G is designed to offer even faster data speeds, lower latency, and increased capacity 
compared to 4G, enabling innovations such as the Internet of Things (IoT), massive MIMO 
(multiple-input multiple-output), and Millimetre Wave and Terahertz Communications 
(Hossain). When we look at the power consumption on user devices in 5G networks, this can 
vary depending on factors such as network infrastructure and 5G implementation, device 
hardware, usage patterns and applications, device alignment and proximity to the antenna, 
etc. (htt202). Initial implementations of 5G have been found to have slightly higher power 
consumption compared to 4G, due to more complex infrastructure and the need for 
additional hardware like (MIMO) antennas (al., 2020). 
  

4.2 Wi-Fi Connectivity 
On the other hand, we have Wi-Fi technology, which is widely used for local wireless 
connectivity within homes, offices, and public spaces. Power consumption on devices 
connected to Wi-Fi networks can vary depending on factors such as Wi-Fi standards (e.g., 
802.11n, 802.11ac, 802.11ax), signal strength, data transfer rates, usage patterns, and 
applications (Markus Tauber). Generally, Wi-Fi can consume less power on user devices 
compared to cellular networks like 3G, 4G, and 5G, particularly during activities like browsing 
and streaming within proximity to a Wi-Fi access point. However, Wi-Fi may consume more 
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power when devices are actively searching for and connecting to networks, or when the Wi-
Fi signal is weak, leading to increased power usage in such scenarios (S. K. Saha, 2015). 
 

4.3 Provider perspective on power consumption 
If we discuss the issue from the point of view of the network operator, 5G has been designed 
to use less energy per bit of data transmitted than 4G, but the massive increase in data 
volumes transferred between user devices and the network still means the 5G energy 
footprint can be significantly larger than that of 4G (enpowered.com, 2024). In fact, existing 
telecom infrastructure is currently being updated to support 5G, in parallel to the previous 
cellular generations, but this progress is often impeded by inefficient hardware setups, 
tuning, and latency limitations that can lead to energy wasted. 
 
As it was recently reported (TUDelft, 2024) the energy efficiency of the networks has only 
gotten worse (from the point of view of the operator): 2G was 60%, meaning of every 10 
watts consumed, six were used to transmit data, and this efficiency dropped to 20% in 4G 
systems, and to 10% in current 5G systems. Furthermore, as it was reported in Forbes (Forbes, 
2020), the mobile telecom industry has pledged to become net-zero by mid 21st century, 
and 5G specifications call for a 90% drop in energy use (per unit of data transmitted) 
compared to 4G. However, 5G is still now being deployed, and the constraints of existing 
infrastructure and design can hamper these performance gains. Therefore, even if 5G has 
been designed with many energy efficiency features, it could make matters worse if larger 
changes in the way it is deployed and operated are not implemented quickly. 
 

4.4 Regular SIM cards vs eSIM cards 
Standard or regular SIM Cards have been used for many years and are physical cards that 
are typically made of plastic and contain a small chip. They require insertion into a SIM card 
slot incompatible devices such as smartphones, tablets, and some IoT devices. They can be 
easily removed and swapped between devices. This feature allows for device-swapping 
options, portability, and flexibility in choosing mobile carriers. The activation and setup 
process of each card usually involves physically inserting the SIM card into the device that 
will use it and following carrier-specific procedures for activation. Given that they are physical 
items, they are susceptible to being damaged or lost if not properly handled by the user 
and/or the device they are inserted. 
 
eSIM (Embedded SIM) Cards are cards that are directly embedded into the device's hardware 
during manufacturing or added remotely through software provisioning. This new 
generation of SIM cards eliminates the need for a physical SIM card slot and physical SIM 
card to be installed for connectivity, which allows the device operating with it to be slimmer 
and offer potentially more space for other components to be installed or placed in the 
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device. The process for activation and setup can be done remotely via software, or through 
a QR code that is provided by the carrier who will supply the connectivity. This means the 
process is simplified for onboarding new users to a provider's network. The eSIM card offers 
the flexibility to switch between different mobile carriers and data/connectivity plans without 
the need to physically swap or install new SIM cards in the device. This is especially useful 
for users traveling abroad and purchasing convenient plans that allow them to avoid 
roaming charges in their home networks. eSIM cards also provide enhanced security features 
compared to physical SIM cards, such as tamper resistance, damage or theft, and remote 
management capabilities. Finally, they can support multiple mobile network profiles 
simultaneously, which enables the device using such SIM cards to seamlessly connect in 
different regions or with different carriers. Even though regular SIM cards are widely available 
and have been in use for many years, eSIMs are being currently adopted and can support a 
variety of devices, manufacturers, and mobile carriers. 
 

4.5 Open questions 
Interestingly, past academic research has shown that 5G can be more energy expensive than 
4G for different applications and tasks, which goes against expectations from the design 
point of view of 5G. Therefore, this line of research identifies a gap between theory and 
practice, and several unanswered questions such as: 

- How does the power consumption of 3G, 4G, and 5G compare under the same 
experimental settings? How does this compare with Wi-Fi connectivity? 

- What about the power consumption of newer types of mobile applications and tasks 
such as private browsers, streaming and social network applications, and even 
applications that employ machine learning (ML) models for inference? 

- Moving into the variety of different types of SIM cards, what is the power 
consumption and performance expected from eSIM cards, and how does it compare 
to traditional SIM cards?  

- Does network connectivity level (3G, 4G, 5G) matter? How does it compare to Wi-Fi 
connectivity? 

  
In this present project, we aim to answer such questions, by performing experiments 
involving different: 

• Mobile devices (Google Pixel 4 and 5) 
• Connectivity levels (3G, 4G, 5G, Wi-Fi) 
• Network carriers (Movistar, Vodafone, Yoigo) 
• Mobile applications (browsers, social networks, streaming video, and ML-powered 

apps) 
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5 Popular applications and services used by smartphones 
As smartphones become increasingly ubiquitous worldwide, certain categories of 
applications have emerged as dominant players in the global traffic landscape. Our objective 
is to delve into the energy consumption patterns across various conditions, considering 
factors such as downstream file size, RATs (3G/4G/5G/WiFi), operators, devices, apps, and 
different protocols or usages (Browsing - HTTPS, Social Network, Video Streaming, and ML 
applications). The aim is to pinpoint key factors contributing significantly to variations in 
consumption across these conditions. 
 

To achieve this goal, we conducted a thorough examination of key factors within popular 
services that command a substantial portion of global traffic, ensuring a comprehensive 
representation of common smartphone usage. Our analysis aligns with the global traffic 
share, focusing on services and apps that contribute the most to smartphone usage. 
 

Referring to the Sandvine report "The Mobile Internet Phenomena" (Sandvine incorporated, 
2021), which highlights that video streaming dominates with 48.9% of the global traffic 
share, followed by social networks at 19.3%, and web browsing at 13.1%, as illustrated in 
Figure 5. 

 

 
FIGURE 5: Global application traffic downstream classified by the category of application, source: 

(Sandvine incorporated, 2021). 
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The report emphasizes the significance of various application domains in shaping global 
internet traffic. To provide a comprehensive overview, we categorize and analyze dominant 
players within each application domain, focusing on those holding the majority market 
share. 
 

Within the digital landscape, certain applications wield significant influence, collectively 
constituting a substantial portion of global internet traffic. Key players in video content 
consumption, such as YouTube (20.4%), Facebook Video (11.3%), TikTok (6.8%), Facebook 
(6.2%), Google (5.4%), and Instagram (5.1%), dominate their respective domains. 
Simultaneously, in the realm of web browsers, Chrome, Firefox, Edge, and Brave collectively 
command over 74% (GlobalStats StatCounter, 2024). 
 

Utilizing this comprehensive market share representation, we are equipped to design 
experiments that ensure real and representative data, accurately reflecting the current 
bandwidth of each domain. This strategic approach allows us to narrow down the scope of 
various experiments, providing valuable insights into smartphone energy consumption 
patterns across diverse application categories. 

 

6 Planned experiments 
The following steps outline our next research experiments: 

1) Effect of RATs, Browser apps, Webpage Size and Device on Energy Consumption 

In the initial stage of our experiments, we will research the impact of various factors on 
energy consumption within the browsing domain. These factors include webpage sizes, RATs 
- 3G/4G/5G/WIFI -, browser applications, and devices. We will use popular webpages of 
different sizes. 

Our objective is to analyze how each of these variables influences energy consumption 
during data usage. This investigation aims to identify and prioritize the key factors that 
contribute significantly to energy consumption in the context of browsing, providing 
valuable insights into energy consumption in this domain. 

 

2) Effect of RATs and Social Media Applications and Device on Energy Consumption 

This phase entails a series of experiments specifically focused on the energy consumption 
patterns associated with Social Media applications and data usage under content load. 
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The experiments involve a comparative analysis of energy usage across these applications, 
examining their impact on different Radio Access Technologies (RATs). The experiments are 
designed to maintain consistency by replicating UI interactions across the different RATs, 
providing a comprehensive understanding of the energy implications associated with Social 
Media app usage. 

Social Apps media will be selected according to downstream Social Media share market ratio 
in Sandvine report (Sandvine incorporated, 2021). 

 

3) Effect of RATs and Streaming (Video) Applications and Device on Energy 
Consumption 

Extending our investigation, this phase concentrates on assessing the energy consumption 
profiles of prevalent Streaming applications. Through comparative experiments, we aim to 
analyze how these applications impact energy usage across different Radio Access 
Technologies (RATs). Similar to the Social Media phase, the experiments are executed with 
consistent UI interactions to ensure reliable results and offer insights into the energy 
dynamics of streaming applications in various RAT scenarios and Streaming apps are 
selected according to downstream Streaming share market ratio in Sandvine report 
(Sandvine incorporated, 2021). 

 

4) Effect of RATs and Machine Learning Applications focused on IoT and Edge 
Computing common usage on Energy Consumption 

In this dedicated segment, experiments were conducted to assess the energy consumption 
associated with a common ML task using TensorFlow Lite package (TensorFlow, 2018) due 
to ease of use on a single device. The exploration of this area is motivated by the 
considerable surge in the use of Machine Learning (ML) and Internet of Things (IoT) 
applications, underlining the current relevance and importance of understanding their 
energy consumption dynamics. 

The significance of studying this aspect is further underscored by the critical role these 
technologies play in contemporary contexts. Conducting an analysis of their energy 
consumption on devices provides a timely reference point for potential future decisions 
related to energy optimization. This exploration not only contributes to the current 
understanding of energy implications but also lays the groundwork for informed choices in 
the dynamic landscape of energy optimization.  
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6.1 Testing actions  
To address the analysis of all experiment consumptions, a series of UI automated processes 
has been developed facilitating the understanding and tracking of device activities. To 
achieve this, various actions have been automated through the MacroDroid application. 
 
Different actions are automated for each experiment category. The data collection starts 
when the smartphone boots up. Initially, it enters IDLE mode in Airplane mode to disconnect 
from networks. Then, the Radio Access Technology (RAT) connection is activated, keeping 
the smartphone in IDLE state with the RAT active. The experiment, specific to each trial, is 
executed with content loading, a measurement window, and closure of the application and 
its background processes. The device experiences a cooldown period (20 seconds for 
Browser trials, 60 seconds for Social Network and Streaming trials) before moving on to the 
next cyclic experiment, following the same pattern. Figure 6 illustrates the Browsing testing 
process. 

 
FIGURE 6: Browsing test actions. Each action represents power consumption, with a focus on energy 

consumption during content loading. 

For browser experiments, private modes prevent caching influence, and cache clearance 
occurs during the cooldown period for other domain categories. Social Network and 
Streaming experiments mirror the Browsing procedure, but with an additional step – cache 
clearance before each app test. 

In Figure 7, a 60-second study window initiates the app for 3 seconds, simulating a 
standardized scenario of user behavior. This involves scrolling to load content with 30 one-
second scrolls and a one-second pause, emulating common usage on Social Networks and 
Streaming apps. 
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Afterwards, a 60-second cooldown occurs, clearing the cache before the next experiment. 
This cyclic process ensures consistency and reproducibility, facilitating meaningful 
comparisons across trials. 

 
FIGURE 7: Social network and streaming test actions. the figure depicts actions and their representation of 

power consumption, emphasizing the energy consumption during content loading  
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7 A telco perspective: optimizing base stations 
The report focuses on presenting the set up of the measurement platform that will help us 
measure the power consumption of smartphones when connecting to different RATs, given 
our privileged access to cellular network data and the ever-increasing growth in the number 
of mobile subscribers. 

We deem it of interest and appropriate to complement the overall project to also study the 
power consumption of telco operators. Research in the area suggests that among the main 
drivers of energy consumption are datacenters, core transmission, mobile switching, and 
base stations. However, base stations consume around 70% (source: Telefonica), previous 
work presents similar numbers (Han, 2011) (Association, 2020 ). Hence, we decided to further 
explore base stations, and we are interested in understanding what are the power-saving 
strategies currently used to reduce their power consumption. The most popular strategy is 
based on utilization thresholds, e.g., base stations with an overall utilization below 6% 
between 11 pm and 6 am are turned off during those times. 

We aim to study part of a country-wide (United Kingdom) dataset from a major mobile 
network operator (O2). Our goal is to characterize the utilization levels of the base stations 
and understand what the impact on the end users is when base stations are turned on/off. 
Furthermore, as a telco operator, we have data from different power-saving policies that 
were live-testing. We will describe the learnings of such live testing and will aim to create a 
model that operators can use to assess the impact of different policies on the overall power 
consumption of the base station and the impact on its users. 

 

8 Summary and conclusions 
This is an initial deliverable in which we provide a background to energy measurements in 
smartphones, and the aspects that influence the power consumption on such devices, 
namely the RATs they are using and the applications running on such devices. hence, we 
described such rats and resented the application domains that we are currently testing. 
overall, this report mostly focuses on describing the environment that will be used to 
perform measurements and on the experiments that will be presented in the subsequent 
deliverables. 
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