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Abstract 

This document describes the initial draft of the system architecture, enabling Artificial 

Intelligence services within future Beyond 5G and 6G networks. Furthermore, methods 

to exploit scenarios with distributed data sources for the training of Machine Learning 

models are detailed. 
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Resumen Ejecutivo 

El objetivo de este trabajo es diseñar un boceto de la arquitectura del sistema de las futuras redes 

B5G y 6G, centrándose en los elementos necesarios para que dichas redes puedan ofrecer servicios 

de Inteligencia Artificial tanto a otros elementos de la red como a usuarios finales. 

El documento profundiza en el concepto de AIaaS: ofrecer servicios de IA basado en un sistema de 

subscripción, siendo los servicios de ML los más utilizados. Para aprovechar todo el potencial de los 

servicios de ML, el documento aporta una descripción detallada de los diferentes esquemas 

existentes en función del tipo de topología del sistema. 

Se presentan los diferentes bloques funcionales que deben existir para poder ofrecer AIaaS, con las 

correspondientes descripciones de sus funciones e interacciones. Además, se integran dichos 

bloques dentro de la arquitectura presentada en los estándares del 3GPP. 

Para finalizar, se aportan los diagramas de flujo de alto nivel seguidos para la configuración y 

provisión del servicio. 

El resto del documento está redactado en inglés, de cara a maximizar el impacto del trabajo 

realizado en este proyecto. 
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Executive Summary 

The objective of this work is to design a sketch of the system architecture of the future B5G and 6G 

networks, focusing on the necessary elements so that these networks can offer Artificial Intelligence 

services both to other elements of the network and to end users. 

The document delves into the concept of AIaaS: offering AI services based on a subscription 

procedure, with ML services being the most popular. To take advantage of the full potential of ML 

services, the document provides a detailed description of the different existing schemes depending 

on the type of system topology. 

The different functional blocks that must exist to be able to offer AIaaS are presented, with the 

corresponding descriptions of their functions and interactions. In addition, these blocks are 

integrated into the architecture presented in the 3GPP standards. 

Finally, the high-level flow diagrams followed for the configuration and provision of the service are 

provided.  
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1. Introduction 

Nowadays everybody knows (more or less) what Artificial Intelligence (AI) is. However, there are 

thousands of definitions, and its boundaries are diffused. Keeping apart this problematic and 

polemic topic, what it is clear is that it is generating a technological revolution, helping in a lot of 

different fields, and day by day being more common in our lives. 

AI solutions can also be implemented in networks to automatize problems. For example, the 

acceptance and configuration of new services or flows, forecasting the behaviour of the network in 

function of how the traffic evolves, or dynamically adjust the resources assigned to each end user.  

From AI, one can highlight Machine Learning (ML). It is a field that uses data from the environment 

to adapt a model to the specific case. The process is called training because the model learns from 

the data. One of the big problems that ML – and, in particular, Deep Learning (DL) – has is 

obtaining enough data to successfully train the models. In many cases, this data is even distributed 

among the system, what generates problems of energy and resource consumption, and reduction 

of training performance (measured by the accuracy of the final model). The problem has been 

studied by many researchers, and it is still a hot topic nowadays. Solutions tries to reduce the 

resource usage and increment the accuracy of the model, but also depends on how the data is 

exchanged through the network. 

However, this powerful tool is an unreachable mystery for many people [1]. To provide it to a 

broader public, AI as a Service (AIaaS) is created. It offers all the advantages of AI models and 

algorithms just by subscribing to it. The idea behind it is the same basis of its sisters ‘as a Service’, 

like Software as a Service (SaaS). 

New generation use cases demand ultra-low latencies, among other stringent requirements [2]. To 

fulfil it, networks have moved the computations as close to the end user as possible, which may 

reduce at the same time the energy consumed (also a milestone in next generation networks), 

among other solutions. AIaaS must also be adapted to these use cases, integrating it with the 

network elements. 

The objective of this manuscript is to define a draft for the integration of AIaaS within the future 

Beyond 5G (B5G) or 6G networks, where not only the network functions will obtain benefits from it, 

but also end users as smartphones or vehicles. Additionally, it presents and describes the 

possibilities from the literature to exploit scenarios where the data needed for the AI service is 

distributed among the system. First, in the second section, the concept of AIaaS is explained in 

detail. In the third section, the problems of scenarios with distributed data are presented, and 

literature solutions are reviewed. Then, fourth section presents a possible architecture for 

integrating AIaaS within B5G or 6G networks. Last, section five summarizes and concludes the 

contributions. 
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2. AI as a Service (AIaaS) 

As the field of AI is so complex and diverse, a high level of expertise is needed to exploit its 

potential at a maximum level. This is a disadvantage for its users and a constraint to its usefulness.  

To solve the gap, AI as a Service (AIaaS) has arisen [3]. It provides AI services (models, data 

processing tools, optimized computer power, …) to other entities just by subscribing to it, without 

developing their own service and investing in software and hardware – see Figure 1. These other 

entities may be network functions to provide services as predictive network resource allocation to 

mitigate QoS drops; or end users, such as IoT devices and smartphones. 

 

FIGURE 1: SCHEME OF AIaaS 

AIaaS provide its services through two different types of subscriptions. First is used by users that 

want to protect their data and process the model by their own, and the other captures the opposite 

case, when users do not have access to enough computational resources and send their data to be 

processed.  

Most notable and used tool from AI is Deep Learning [4], where complex models are trained with 

data to produce accurate results. Hence, AIaaS also allows the training of these models with data 

from users. Same as before, training may be performed by the user (to protect its data) and only 

sending model parameters, or by the resources provided by AIaaS, in case the user does not have 

enough computational resources. However, these models need large amounts of data to be 

properly trained (i.e., to produce accurate answers). To tackle this problem, one can exploit data 

from different sources to jointly train the model. 
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3. Distributed data 

In real scenarios, it is typical to encounter data sources spread among the system. For example, a 

company with several buildings located in different places, a group of hospitals, each one with its 

own database, a group of IoT devices, vehicles, or smartphones, etc. There are thousands of 

examples and, as aforementioned, one can use all data to train highly accurate models. 

However, it is not straightforward how to do it since new problems and questions come into the 

picture: it is clear that you want to use all data but, where do you train the model? This process is 

normally computationally expensive, so it needs a considerable amount of that kind of resources; 

you need also to care about how to transport the information, as moving such amount of data can 

collapse the network if it is not prepared; additionally, sources may not trust each other, then they 

are not willing to share their real information. And these decisions not only affect the duration or 

the energy consumption, but also the accuracy of the resulting model. 

Fortunately, the topic is already studied by thousands of researchers [5,6], and competitive 

techniques are already developed and proven to deal with previous problems. Furthermore, it is 

still growing and a hot topic in the research area of the AI. The ideas behind these techniques are 

the following: 

• Reduce the amount of transmitted data with compression techniques. 

• Select only significant information. 

• Divide the computing task among several nodes. 

• Sharing only abstracted data to maintain the privacy of the information. 

One way to classify them is regarding the abstracted scheme followed during the training process. 

In other words, the graph that captures the data exchanges, which is bounded by the topology of 

the system. The scheme can be centralized if exist a central coordination point, or decentralized if it 

does not exist. There are also some solutions that lives between the two classes, trying to get the 

advantages of both worlds. 

3.1. Centralized Schemes 

First and most basic idea when one needs to work with pieces distributed among several entities is 

gathering them together at some point. This is precisely the idea behind the centralized schemes: 

send all information to a central node where data is processed – see Figure 2. The central node also 

takes the role of the coordinator, giving the proper orders to the rest of the system to ensure that 

the training of the model is successfully completed. 
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FIGURE 2: CENTRALIZED SCHEME 

In case the training of the model is performed on the central node, there only exists a single 

instance of the model (within the central node) – see Figure 3. The information can be ciphered to 

a third viewer during the transmission, but not to the central node. One scenario to apply this 

scheme is, for example, in smart agriculture, where a bunch of sensors spread among the field send 

their data to a control unit, which is in charge of processing it. 

 

FIGURE 3: EXAMPLE OF A CENTRALIZED SCHEME 

Federated Learning 

Recently, a new paradigm has arisen that can be englobed also within the centralized 

schemes. It is called Federated Learning (FL) [7], and it is thought to maintain the privacy of 

the data. However, to understand its basis, we need to explain first how model training works. 

Deep Learning models transform the input data with a considerable number of layers, each of 

them is configured with a set of parameters or weights. Hence, the output depends on all 

these parameters, normally called model weights. The training consists in adjusting all these 

weights to obtain the desired output. A common way to do it is through gradient descent, 

aligning the model weights in a vector. Notice that two different weights vectors represent 

two different states of the model. 
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Going back to FL, what it proposes is to train local models within the sources of data and 

send only to the central node the resulting weights of all local models trained in the sources. 

Specifically, these are the steps that are performed, that can also be shown in Figure 4: (i) the 

central node, which has the model, sends a copy to all data sources; (ii) then, all data sources 

train their local models with their own data and (iii) send the model weights (after training) to 

the central node, which (iv) aggregates all weights into the global model. The process is 

repeated until some condition is satisfied, for example, the model reach a certain level of 

accuracy. From the steps, there is one that has not been mentioned until now, the 

aggregation of weights. As model weights can be represented as a vector, one common 

approach is to average all of them, but there also exists other ways, as weighted averaging.  

 

FIGURE 4: EXAMPLE OF FL 

Remember that one of the pillars of FL is the fact that can preserve the privacy of the data 

but, how it is achieved? As the central node only receives model weights, is difficult for it to 

derive the raw data which generated those weights, maintaining in this way the privacy of the 

information. This privacy insurance makes it very attractive for a bunch of use cases, and its 

popularity is enormous. Nevertheless, FL also adds some restrictions: as one can see, data 

sources must have computational resources available to perform the local training. An 

example where FL can be applied is an application that uses the end devices (smartphones) 

to gather information and train a model. 

HIERARCHICAL SCHEMES 

FL did not only suppose an important step for the implementation part, but also for the 

research field, as opened a window of new possibilities (apart from a whole new area). 

Centralized schemes have evolved to more sophisticated solutions where they converge to 

the central node in more than one step, involving additional nodes. These solutions are called 
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Hierarchical schemes, each of the steps representing a layer of the hierarchy. It can also be 

seen as a tree graph, where the root is the central node, and the edges represent data 

exchanges – see Figure 5. 

 

FIGURE 5: EXAMPLE OF A THREE-LAYER HIERARCHICAL SCHEME 

The training of the models is normally performed in one of the two first layers, being the rest 

of them used for aggregating the model weights. These schemes are normally used in dense 

scenarios, with a large number of elements, for example, the three-layer hierarchical scheme 

where a bunch of IoT users connected to several access points, which train the model and 

send the weights to a common central node to aggregate all of them. 

3.2. Decentralized Schemes 

The lack of central node in some use cases, or the impossibility of select one, generates the need of 

a new learning scheme that can fit in them. Notice that this scenario is more common that one can 
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thought, for example, a set of companies that train a model together, but no one wants to give 

more rights to the other. 

The solution, then, focuses on eliminating the figure of central node and allow nodes to exchange 

data among them – see Figure 6. In this case, each node has its own instance of the model, which 

learns from the local data and the receiving information. However, over an enough number of 

rounds, all models converge to the same point. 

 

FIGURE 6: DECENTRALIZED SCHEME 

FL also influenced the decentralized schemes. The idea is that all nodes perform the training and 

aggregation of weights, as explained in the following: the process starts with the assumption that 

all nodes already own an instance of the same model; first, (i) nodes locally train their models and 

(ii) send the model weights; then, (iii) also all nodes aggregate the receiving weights with their own, 

and the process starts again. These steps are detailed in Figure 7. 

 

FIGURE 7: EXAMPLE OF A DECENTRALIZED SCHEME, OR DFL 
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Some authors call this kind of schemes Decentralized Federated Learning (DFL), but others just 

refer to them as Decentralized Schemes or Decentralized Learning (DL). One example of this is the 

cooperative training of a model among a set of Access Points. 

3.3. Hybrid approaches 

Some solutions cannot be categorized within any of the previous two schemes, because try to 

merge both of them and get advantages from both sides. There is not a common approach on how 

to call them. Some authors refer to Semi Decentralized Schemes, others just englobe them into the 

Decentralized Schemes. The characteristics of these approaches depends on how they are 

constructed, in function of the pieces that collect from the former schemes, and they must be 

studied for each case in particular.  

For example, in [8] the authors propose a scheme to train models over a scenario with a set of 

equal nodes. This scheme is very similar to FL, where nodes send their weights to the central node. 

However, the central node changes between rounds, and any node of the system can be selected 

as the new central node. 

Other example is the work [9], in this case, thought to be applied on a scenario with multiple edge 

servers, each of them with a set of connected devices. The presented scheme has two layers, one 

centralized and the other decentralized. First layer englobes the interactions between the edge 

servers and their connected devices, and it employs the same rules than FL to obtain a model for 

each of the edge servers. Second layer is the interactions among the edge servers, which exchange 

their models in a decentralized manner. 
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4. AIaaS in 3GPP 

New use cases tackled in future 6G networks tends to have stringent latency requirements [2], so it 

is fundamental that services in those use cases fulfil the QoS. The paradigm of Edge Computing 

tries to solve that problem by bringing closer the applications to the end users, or specifically, to 

the Edge of the network. Following this line of thought, to increase the capabilities of the AI 

services and reduce their response times, one can bring them as close as possible to the consumer. 

With this development, critical actions as the dynamic allocation of resources can be solved using 

AIaaS solutions. 

Integrating AIaaS within 6G networks will leverage its functionality and usability. A key 

enhancement must be the availability of these services for both end users and network elements 

through well-defined interfaces. 

In the following subsections, we present a reference architecture for AIaaS, explaining the 

functionality of all existing elements, to later provide a possible integration within future networks, 

explaining the elements from the standard that take a role in the process. 

4.1. AIaaS architecture 

Figure 8 depicts the proposed architecture for a AIaaS element, and it is divided in: 

• Input modification: acts as the entrance gate. Its main role is to prepare the data to be 

processed by the computing node, which results indispensable when treating AI solutions 

because data in the wrong format may corrupt the whole model. 

• Output translation: opposite to the former entity, this is the exit gate. Its function is to 

translate the result from the AI algorithms or models to one understandable by the current 

agent. 

• AIaaS Worker: is responsible for executing the steps from the AI algorithm, process the data 

through the ML model, or aggregate the weights from agent models. Basically, it consumes 

the data from the agent to produce the answer given by the selected AI service. 

• AIaaS Controller: is the brain of the subsystem and configures the rest of elements to 

provide the service accordingly to the requirements of the task at hand. In particular, it 

sends the AI algorithm or model that satisfies the selected service to the Computing node, 

specifying all the required actions to fulfil the task; and provide the format of the data to 

the Input modification and the Output translation. One instance of the controller may 

service to one or more instances of the rest of the components. 

• AIaaS Agent: represents a subscripted user to the service, which sends its data and receives 

the output. As aforementioned, it can use the computing resources from the service or not, 

to protect the privacy of its information. 
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FIGURE 8: AIaaS INTERNAL DESCRIPTION 

Green arrows in Figure 8 represents the data flow from the agent to the computing node where 

this data is processed. By contrast, orange arrow exemplifies the answer given by the service to the 

agent, which also encompasses the transmission of model weights. 

The controller has two additional interactions, apart from those described in Figure 8. By one side, 

an external entity must communicate the supported services by the AIaaS entity to the controller 

when it is being implementing, or if a new service will be provided. This entity may be the network 

control plane, or directly, the administrators of the network. By the other side, the controller can 

communicate with other AIaaS controllers that provide the same service. This allows to leverage the 

distributed schemes explained in former section to increase the performance of the employed ML 

model, using data from other domains. 

Notice that AIaaS may satisfy several different services at the same time. For this purpose, it may be 

configured with all the appropriate algorithms and models. 

4.2. 5G walkthrough 

Before getting to work in the integration, we describe some NFs, interactions, and procedures from 

3GPP standards that can result useful and are related to AIaaS. 

3GPP defines in [10] and detail in [11] the Network Data Analytics Function (NWDAF). It supports 

the collection and analysis of data and exposes the results to other elements of the network. Its 

objective is to provide the needed tools to the rest of the Network Functions (NFs), and even the 

Operations, Administration and Maintenance (OAM) to take decisions or actions leveraging data 
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and its analysis. This analysis of the data may be performed using ML models, also allowing the 

training of them. 

The functionality of the NWDAF can be complemented or split using the following optional NFs: 

• Data Collection Coordination Function (DCCF): coordinates the collection of data, 

instructing the proper NFs to provide it. It can also format and process the data and 

redistribute to the consumer. This functionality can be covered by the proper NWDAF. 

• Analytics Data Repository Function (ADRF): serves as a database for all kind of information: 

raw data exposed by the sources, results generated by the NWDAF, and the trained models 

that are used. 

• Messaging Framework Adaptor Function (MFAF): processes, formats, and sends data to the 

consumers following a messaging framework. 

To visualize the interactions among these NFs, Figure 9 from [11] depict interfaces among them, in 

this case, to expose the analytics from the NWDAF. Notice that the data collection procedure is 

analogue, and the ADRF can substitute any side. 

 

FIGURE 9: NWDAF INTERFACES TO EXPOSE ANALYTICS [11] 

The standard also supports the deployment of more than one instance of the NWDAF, which can 

be specialized in different tasks or the same (leveraging scenarios with distributed data sources 

with FL). 

3GPP standards also define in [12] the requirements and architecture necessary to provide Edge 

Computing services. They offer interfaces and Application Programming Interfaces (APIs) tailored 

for application developers to harness edge capabilities – see Figure 10 from [13]. Developers gain 

the ability to discover, establish connections with, and seamlessly transition between various 

application servers situated on the edge network. This access empowers them to maximize the 

potential of the underlying 3GPP network, enhancing and optimizing their services by leveraging 

edge computing capabilities. 
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FIGURE 10: EDGE ENABLER ARCHITECTURE [13] 

In the following, all functional blocks represented in Figure 10 are defined one by one, highlighting 

the relationship and interactions between them. 

Application Client (AC) 

The AC, or Application Client, operates within the User Equipment (UE) and functions as the 

client for applications. 

Edge Application Server (EAS) 

EAS functions as the server for applications. ACs connect to the EAS to access application 

services leveraging Edge Computing advantages. While some application server functions 

might exclusively be available as an EAS, others might exist both at the edge (EAS) and in the 

cloud. These functions might be identical or differ between the EAS and cloud-based 

counterparts, potentially leading to variations in the exchanged Application Data Traffic with 

the AC. 

The EAS can interact with the 3GPP Core Network capabilities in several optional ways. It can 

access 3GPP Core Network capabilities via the edge enabler layer through the EES, or it can 

directly access 3GPP Core NFs if is trusted (using capability exposure functions like NEF). 

Edge Enabler Server (EES) 

EES plays a crucial role in facilitating functionalities essential for EASs and EECs. Its key 

responsibilities include provisioning configuration data to EEC, offering API invocation and 

exposure functions, to allow the exchange of application data traffic with the EAS. It also can 

interact with the 3GPP Core Network, supporting external exposure of network and service 

capabilities. 
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Edge Enabler Client (EEC) 

It provides the retrieval of configuration parameters by the AC to enable the exchange of 

application data traffic between the application located in the edge server, and is in charge of 

discover available EASs and control the mobility of the UE, among other configuration 

parameters. 

Edge Configuration Server (ECS) 

ECS serves as a critical support system enabling connectivity between EECs and EESs. Its 

functionalities encompass provisioning essential edge configuration information to EECs, 

including details to distinguish among EESs and establishing connection parameters. 

Furthermore, ECS supports registration functions for EESs, API-related operations, and 

interfaces with the 3GPP Core Network to access network capabilities. It manages service 

provisioning information with partners and retrieves data from them as well. ECS can also 

facilitate ECS discovery for unconfigured EAS by utilizing Edge repository functions. 

Additionally, ECS-ER, an enhanced version, expands capabilities to support federation and 

common EAS discovery by registering, storing, and exchanging edge computing resource 

data among ECSs and ECS-ERs within the federation, providing a centralized repository for 

common EES and EAS information. 

Additionally, the 5G network incorporates diverse functionalities and enhance others to facilitate 

edge computing, such as traffic steering, local area network connectivity, and the ability to support 

three distinct connectivity models delineated in [14]. 

• Distributed Anchor Point: Utilizes a local Packet Data Unit (PDU) Session Anchor (PSA) User 

Plane Function (UPF) to direct all UE traffic to the local site, occasionally optimizing routing 

via re-anchoring. 

• Session Breakout: Employs a central site's PSA UPF along with one or more local site PSA 

UPFs for a PDU session. The edge computing application traffic is selectively directed to the 

local PSA UPF using mechanisms like Uplink (UL) Classifier or multi-homing Branching Point. 

• Multiple PDU Sessions: Involves using PDU sessions with local and central site PSA UPFs for 

various applications. The local PSA UPF may change due to UE mobility or other factors. 

The 5G core network also supports the Edge Application Server Discovery Function (EASDF), 

enabling the discovery of relevant EAS IP addresses for edge applications. This feature assists in 

identifying EASs during application initiation or when selecting a new EAS for specific 

functionalities, acting as a Domain Name System (DNS) resolver. For fulfilling its obligations, EASDF 

has an interface to communicate with EASs through the UPF. 
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4.3. Integration in future networks 

Regarding the previous discussion, it is clear that the NWDAF can provide AI services to other NFs, 

but it is restricted to provide network analytics and lacks the provision to the UE. To fulfil the gap, 

Edge Computing can be leveraged. 

Figure 11 presents the architecture integrating AIaaS functional blocks from Figure 8 into the 5G 

network architecture and depict the interactions between them. As one can see, the AIaaS 

Controller acts as a new NF from the viewpoint of the 5G core, and the AIaaS Workers are deployed 

as NWDAF instances or applications in the Edge, in function of whether the service that it will fulfil 

needs data from the user or not. 

 

FIGURE 11: INTEGRATING AIaaS WITHIN 5G ARCHITECTURE 

The AIaaS Controller needs to register in the Network Repository Function (NRF) itself and all the 

services that it is able to provide, exposing them to the rest of NFs. Also, it can use the NRF services 

to discover other AIaaS Controllers and their services. All these interactions are carried out through 

the Nnrf interface. 

 

FIGURE 12: NRF CAPABILITY EXPOSURE 

With this procedure, any NF is aware of the services that the AIaaS Controller can provide, and how 

can reach it. To provide this capability also to the UEs, the functionality of the EASDF can be 

leveraged. As it acts as a proxy between the UE and the DNS, it is straightforward to expand its 
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functionality to provide also the address of the AIaaS Controller when UE want to access to its 

services.  

AIaaS Workers are volatiles, i.e., they are instantiated and destroyed, by the AIaaS Controller, on 

demand. Then, when any entity wants to ask the AIaaS Controller for a service, the process that 

occurs is the following, described in Figure 13: 

i. First, the client contacts the AIaaS Controller to indicate the needed service, establish the 

characteristics (e.g, if the client will execute model training by its own to not expose its 

private information) and negotiate its QoS requirements (e.g., latency, or minimum accuracy 

for the ML model). 

ii. The AIaaS Controller determines the AIaaS Workers that are needed to satisfy the promised 

service. As the figure shows, AIaaS Workers can be located in the core, as an NWDAF, to 

offer its services to the rest of NFs, or in the Edge Data Network (EDN), as an edge 

application within the EAS, to provide services to applications from the UE side. Some 

scenarios may require more than one AIaaS Worker to successfully provide the service, so 

the AIaaS Controller must also decide the interactions among all the elements, workers and 

agents. 

iii. Once everything is decided, the AIaaS Controller must instantiate the AIaaS Workers, 

providing them the AI model or algorithm that will consume the data, the data structure 

that will receive and the type of output that must be sent to the AIaaS Agent. Additionally, 

the AIaaS Controller must provide the interfaces that the AIaaS Worker will need to 

exchange information with other workers and the instructions to do so, in function of the 

decided scheme. 

iv. While step iii is being performed by the AIaaS Controller, AIaaS Agents must be also 

instantiated. As the AIaaS Workers, the AIaaS Agents has also different possible locations, in 

function of where the data sources are connected to. In case the source is a NF, the AIaaS 

Controller is the one in charge of configuring it. 

v. Finally, the AIaaS Controller communicates to the client that the platform is instantiated 

correctly (or not, in case of some failure). 
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FIGURE 13: SERVICE CONFIGURATION 

In case that the AIaaS Controller is not capable of satisfying all requisites of the needed service, it 

can ask other AIaaS Controllers to expand its capabilities, or directly act as a proxy between the 

consumer and the other AIaaS Controller, as is depicted in Figure 14. 
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FIGURE 14: SERVICE CONFIGURATION USING AN AIaaS CONTROLLER AS PROXY 

After instantiating all elements and configuring the interactions, the service can begin to be 

satisfied. The process, in this case, will depend on the scheme proposed by the AIaaS Controller, 

but is generally involves the next steps: 

i. AIaaS Agent that has the data source preprocess the data following the given instructions. 

Under specific scenarios, it will also train the AI model. This step is optional and will be 

implemented only if the situation needs it. 

ii. The data is transmitted from the AIaaS Agent to the Input Modification point of the AIaaS 

Worker, which modifies (if needed) and deliver it to the worker. 

iii. The AIaaS Worker that receives the data will perform the actions the AIaaS Controller has 

indicated in its creation. This englobes the execution of algorithms, model training or 

inference, model weights aggregation, etc. 

iv. Last, the AIaaS Worker sends the processed answer through the Output Translation point to 

the AIaaS Agent that consumes the answer. Notice that the consumer may be different from 

the source if the client of the service indicates it. 
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FIGURE 15: SERVICE WORKFLOW 

When step iv is finalised, the process may be repeated continuously until the service is satisfied. 

During this time, the AIaaS Controller may desire to change some parameters of the process, either 

for a direct request of the client, e.g. by updating the QoS requirements, or due to a change in the 

environment that alters the service provisioning. In this case, the AIaaS Controller will send the new 

configuration to all elements that are affected and notify the client, if necessary, as one can see in 

Figure 15. 
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FIGURE 16: SERVICE MODIFICATION. 

Once the service is complete and correctly satisfied, the AIaaS Controller may eliminate the 

elements that are not needed anymore to release the resources. 

Remark that all these aforementioned interactions are described under the condition that all 

entities are reliable and trustworthy. In any other scenario, the untrusty element must interact with 

the NEF, using Nnef interface. Then, NEF will interact with the proper trusty NF to retrieve the 

needed information. 

 

FIGURE 17: COMMUNICATION VIA NEF 
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5. Summary and Conclusions 

In exploring AIaaS, it becomes apparent that leveraging AI's full potential demands a high level of 

expertise. AIaaS addresses this expertise gap by providing AI services to entities without the need 

for extensive infrastructure development. This service includes AI models, data processing tools, 

and optimized computing power. It caters to various entities, including NFs from the 5G core and 

end users like IoT devices and smartphones. 

AIaaS operates through two subscription types, accommodating users who want to protect their 

data by processing models themselves or those lacking computational resources who opt to send 

their data for processing. Deep Learning, a significant AI tool, plays a key role in AIaaS, enabling the 

training of complex models for accurate results. However, training these models requires 

substantial data, often sourced from distributed data pools. 

The challenge arises with distributed data sources. Real-world scenarios present data sources 

spread across various entities like companies with multiple locations, hospitals with distinct 

databases, and IoT devices. Combining data from these sources poses several challenges: 

• Data Training Locations: Determining where to train the model, considering computational 

expenses and network limitations. 

• Data Transmission: Moving substantial data amounts without overburdening the network. 

• Data Privacy and Trust: Ensuring data privacy as sources may not trust each other, hindering 

information sharing. 

Researchers have developed competitive techniques to address these challenges. These solutions 

aim to reduce transmitted data using compression techniques, select significant information, 

distribute computing tasks across nodes, and abstract data to maintain privacy. 

The document presents the two primary categories, centralized and decentralized schemes, which 

emerge to address these data challenges: 

• Centralized Schemes: Concentrate data at a central node for processing and model training. 

• Decentralized Schemes: Eliminate the central node, allowing nodes to exchange data 

among themselves for training and aggregation of weights. 

Federated Learning (FL) introduces a new paradigm within centralized schemes, aiming to maintain 

data privacy. FL entails training local models within data sources and sending resultant weights to a 

central node for aggregation. This method preserves data privacy by only transmitting model 

weights, making it attractive for various applications. 

Hierarchical schemes evolve centralized solutions by introducing additional nodes, forming 

multiple layers of data exchange. These schemes find applications in dense scenarios with 

numerous elements, aiding in aggregating model weights. 

AIaaS's integration within 6G networks holds significant promise, exploiting all the power of AI 

services leveraging the high performance of next generation networks, as it already does the 
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framework of Edge Computing. This integration requires well-defined interfaces for AI services, 

catering to both end users and network elements. 

This document proposes an AIaaS reference architecture that includes the following components: 

Input Modification, Output Translation, AIaaS Workers, AIaaS Controller, and AIaaS Agents. This 

architecture facilitates data flow, processing, and service provision within the AIaaS framework. 

Within 3GPP standards, the Network Data Analytics Function (NWDAF) supports data collection 

and analysis, allowing decision-making based on analyzed data. The 5G architecture facilitates Edge 

Computing, enabling connectivity between Edge Enablers, Application Servers, and the 3GPP Core 

Network. 

The integration of AIaaS within future networks involves leveraging NWDAF functionalities and 

Edge Computing to bridge gaps in service provision to end users. The presented architecture 

shows interactions between AIaaS elements and their incorporation into 5G network architectures. 

It's powered by the AIaaS Controller acting as a new core entity, orchestrating AIaaS Workers 

strategically. 

The AIaaS Controller registers services in the Network Repository Function (NRF), enabling 

seamless access across network functions (NFs) via the Nnrf interface. This extends services to users 

through the Edge Application Server Discovery Function (EASDF). 

AIaaS Workers are dynamic, spawned and terminated on demand by the AIaaS Controller. 

Highlights of the service requests are: 

• Clients engage the AIaaS Controller, specifying service needs and QoS. 

• The Controller deploys AIaaS Workers, deciding their location based on data 

requirements—core or Edge. 

• AIaaS Agents, if needed, are configured by the Controller. 

The process to provide the service involves data preprocessing, transmission, AI model execution, 

and result delivery, managed by the AIaaS Controller. 

This setup allows dynamic adaptations and parameter changes by the AIaaS Controller, concluding 

with resource release after successful service completion. In uncertain trust scenarios, untrusted 

elements interact via the NEF-Nnef interface to engage trusted NFs for information retrieval. 

The complex nature of AIaaS integration requires robust interfaces, reliable interactions, and 

adaptability to diverse scenarios for seamless service provision within future networks. 

  



Initial System Architecture 30 

   

  

References 

[1] Castelvecchi, D. (2016). Can we open the black box of AI?. Nature News, 538(7623), 20. 

[2] Banafaa, M., Shayea, I., Din, J., Azmi, M. H., Alashbi, A., Daradkeh, Y. I., & Alhammadi, A. 

(2023). 6G mobile communication technology: Requirements, targets, applications, 

challenges, advantages, and opportunities. Alexandria Engineering Journal, 64, 245-

274. 

[3] DATADRIVEN-03-E7 “Estudio de las necesidades y requisitos de la industria conectada 

en relación con la aplicación de soluciones AIaaS y sus posibles demostradores”. 

[4] P. P. Shinde and S. Shah, "A Review of Machine Learning and Deep Learning 

Applications," 2018 Fourth International Conference on Computing Communication 

Control and Automation (ICCUBEA), Pune, India, 2018, pp. 1-6, doi: 

10.1109/ICCUBEA.2018.8697857. 

[5] Peteiro-Barral, D., Guijarro-Berdiñas, B. A survey of methods for distributed machine 

learning. Prog Artif Intell 2, 1–11 (2013). https://doi.org/10.1007/s13748-012-0035-5. 

[6] Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim 

Verbelen, and Jan S. Rellermeyer. 2020. A Survey on Distributed Machine Learning. 

ACM Comput. Surv. 53, 2, Article 30 (March 2021), 33 pages. 

https://doi.org/10.1145/3377454. 

[7] H. Brendan McMahan and Daniel Ramage. Federated learning: Collaborative machine 

learning without centralized training data. 

https://research.googleblog.com/2017/04/federated-learning-collaborative.html, 

2017. 

[8] Hadeel Abd El-Kareem Abd El-Moaty Saleh, Ana Fernández Vilas, Manuel Fernández-

Veiga, Yasser El-Sonbaty, and Nashwa El-Bendary. 2022. Using Decentralized 

Aggregation for Federated Learning with Differential Privacy. In Proceedings of the 

19th ACM International Symposium on Performance Evaluation of Wireless Ad Hoc, 

Sensor, &amp; Ubiquitous Networks (PE-WASUN '22). Association for Computing 

Machinery, New York, NY, USA, 33–39. https://doi.org/10.1145/3551663.3558682. 

[9] Sun, Y., Shao, J., Mao, Y., Wang, J. H., & Zhang, J. (2022, April). Semi-decentralized 

federated edge learning for fast convergence on non-IID data. In 2022 IEEE Wireless 

Communications and Networking Conference (WCNC) (pp. 1898-1903). IEEE. 

[10] 3GPP, System architecture for the 5G System (5GS), Service and System Aspects 

working group, Technical Specification (TS) 23.501, Release 17. 

[11] 3GPP, Architecture enhancements for 5G System (5GS) to support network data 

analytics services, Service and System Aspects working group, Technical Specification 

(TS) 23.288, Release 18. 

https://doi.org/10.1007/s13748-012-0035-5
https://doi.org/10.1145/3377454
https://research.googleblog.com/2017/04/federated-learning-collaborative.html
https://doi.org/10.1145/3551663.3558682


Initial System Architecture 31 

   

  

[12] 3GPP, Architecture for enabling Edge Applications, Service and System Aspects 

working group, Technical Specification (TS) 23.558, Release 18. 

[13] Dongwook Kim, June 2023, Edge Computing, 3GPP, accessed 22/12/2023 

https://www.3gpp.org/technologies/edge-computing.  

[14] 3GPP, 5G System Enhancements for Edge Computing; Stage 2, Service and System 

Aspects working group, Technical Specification (TS) 23.548, Release 18. 

https://www.3gpp.org/technologies/edge-computing

	List of Figures
	List of Acronyms
	Resumen Ejecutivo
	Executive Summary
	1. Introduction
	2. AI as a Service (AIaaS)
	3. Distributed data
	3.1. Centralized Schemes
	3.2. Decentralized Schemes
	3.3. Hybrid approaches
	4. AIaaS in 3GPP
	4.1. AIaaS architecture
	4.2. 5G walkthrough
	4.3. Integration in future networks
	5. Summary and Conclusions
	References

