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Abstract 

The main objective of 6G-SORUS is to study the integration of UAVs with RIS and vRAN. This docu-
ment describes a set of algorithms and techniques to be used when orchestrating a B5G scenario 
with drones. The document provides a review of the state of the art and an initial subset of techniques 
to apply. These are divided in three groups: general algorithms to be used by UAVs (path planning, 
localization, etc.), orchestration algorithms (i.e., algorithms to control the overall operation of the 
service), and techniques and algorithms to provide communications using drones. 
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1. Introduction 

Unmanned Aerial Vehicle (UAV) networks involve using multiple UAVs to carry out coordinated tasks 
like surveillance, monitoring, mapping, search and rescue, or communication. There are several ad-
vantages and disadvantages to using UAV networks, which we'll explore below. 

Advantages: 

1. Quick deployment: UAVs can be deployed rapidly, making them ideal for setting up com-
munication networks in hard-to-reach areas or where traditional infrastructure is unavailable. 

2. Flexible: UAVs are easy to move around, making them well-suited for emergency response 
situations or events where communication networks need to be established quickly. 

3. Wide coverage: UAVs can provide communication coverage to large areas, making them 
ideal for creating networks in remote or rural regions. 

4. Resilient: UAVs can establish communication networks in disaster-stricken areas where tra-
ditional infrastructure may be damaged or non-existent. 

5. Cost-effective: UAV-based networks can be cost-effective compared to traditional infra-
structure, particularly in remote areas where laying cables or building towers is expensive. 

Disadvantages: 

1. Limited battery life: UAVs have a restricted battery life, which can limit their usefulness in 
establishing communication networks for long periods. 

2. Limited payload capacity: UAVs have a limited payload capacity, restricting the number and 
type of communication equipment they can carry. 

3. Weather-dependent: UAV-based networks require favourable weather conditions and may 
not be suitable for use in adverse weather conditions. 

4. Limited bandwidth: The communication network created by UAVs may have limited band-
width, which could negatively impact communication quality. 

5. Regulatory challenges: UAV-based networks may face regulatory hurdles, particularly in ar-
eas with restrictions on UAV use or where the airspace is congested. 

In summary, UAV-based networks offer benefits such as quick deployment, flexibility, wide coverage, 
resilience, and cost-effectiveness. However, they also have limitations such as limited battery life, 
payload capacity, weather-dependence, bandwidth limitations, and regulatory challenges. These dis-
advantages should be taken into account when deciding whether to use UAVs for establishing com-
munication networks. 

In what follows, we present an updated review of the state of the art considering algorithms for the 
operation of drones in B5G scenario. It has been done by performing a literature review of the most 
recent scientific works published, which have been ranked by their relevance, and then classifying 
them in three groups: general algorithms to be used by UAVs (path planning, localization, etc.), Or-
chestration algorithms, and techniques and algorithms to provide communications using drones.  
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2. Algorithms for UAV-based networks 
There are several algorithms used for unmanned aerial vehicles (UAVs) that allow them to perform 
different tasks and missions. We present in the next figure some problems for UAVs and the 
algorithms to address them.  

 
FIGURE 1. CLASSIFICATION OF THE PROBLEMS AND ALGORITHMS IN UAV-BASED COMMUNICATIONS 

We next provide an in-depth exploration of each of these algorithms, delving into their strengths 
and limitations. Additionally, we also address the upcoming challenges that lie on the horizon.  

Path planning algorithms for UAVs 

These algorithms are designed to find an optimal or near-optimal path for the UAV to follow in order 
to complete a mission. This can include tasks such as surveillance, inspection, search and rescue, and 
more. The algorithm must take into account various factors such as terrain, obstacles, energy con-
sumption, and time constraints. 

Path Planning 

Algorithm Challenge Approach 

Potential Field [CWH17, 
CSQ13] 

Imagine a search and res-
cue mission in a disaster-

This algorithm creates a vir-
tual field around the UAV, 
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stricken area, and you 
have a team of UAVs 
tasked with locating survi-
vors in a partially col-
lapsed urban environ-
ment. The UAVs need to 
navigate through the de-
bris, buildings, and other 
obstacles to find and 
mark the locations of sur-
vivors. 

with attractive forces guid-
ing the UAV towards its tar-
get and repulsive forces 
pushing it away from ob-
stacles. 

Graph-based [LCC20] Imagine a scenario where 
you have a network of 
UAVs tasked with opti-
mizing their connectivity 
to ensure efficient com-
munication and data 
sharing among them. The 
UAVs are deployed in a 
large, remote area with 
various obstacles and ter-
rain features that affect 
their communication 
range. The goal is to de-
sign a network topology 
that maximizes connectiv-
ity while minimizing en-
ergy consumption. 

This algorithm represents 
the environment as a 
graph, with each node rep-
resenting a location in the 
environment and each 
edge representing a possi-
ble path between nodes. 
The algorithm then 
searches for the shortest 
path from the UAV's cur-
rent location to its destina-
tion.  

Sampling-based [KF13] Imagine a scenario where 
you have a team of UAVs 
tasked with monitoring a 
forested area for potential 
fires and, if a fire is de-
tected, suppressing it by 
dropping water or fire re-
tardant. The forest is 
dense and filled with trees 
of varying heights, mak-
ing navigation challeng-
ing. The UAVs must find 
efficient paths through 
the forest to monitor the 
entire area and respond 
quickly to any fire detec-
tions. 

This algorithm generates a 
random set of points in the 
environment and connects 
them to create a graph. The 
algorithm then searches for 
the shortest path from the 
UAV's current location to its 
destination using this 
graph.  
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Model Predictive Control 
(MPC) [KLP17, GRW13]. 

Imagine a precision agri-
culture scenario where 
you have a fleet of UAVs 
tasked with optimizing 
the distribution of fertiliz-
ers or pesticides in a large 
agricultural field. The goal 
is to minimize resource 
usage (e.g., chemicals, 
fuel) while maximizing 
crop yield by precisely tar-
geting areas that require 
treatment. 

This algorithm predicts the 
UAV's future movements 
based on its current state 
and environmental condi-
tions and generates a path 
accordingly. The algorithm 
continually updates the 
path based on changes in 
the UAV's state and envi-
ronmental conditions.  

Path planning algorithms play a crucial role in enabling UAVs to navigate through complex environ-
ments and complete their missions safely and efficiently. As seen above, current solutions rely on 
different techniques such as building a graph or virtual fields, and could be used to plan the tempo-
rary coverage to be provided in a deployment using UAVs.  

Computer vision algorithms for UAVs 

Computer vision algorithms play a critical role in enabling unmanned aerial vehicles to analyse im-
ages and videos in real-time to identify objects, recognize faces, and detect anomalies. These algo-
rithms enable UAVs to process visual information and make decisions based on what they "see". 

Computer Vision 

Algorithm Challenge Approach 

Object detection [RTO19, 
LZX16]  

Imagine a wildlife conser-
vation project in a vast 
natural reserve or national 
park. The goal is to moni-
tor and protect endan-
gered species while col-
lecting data on their be-
haviour and habitat. 

This algorithm allows the 
UAV to detect and recog-
nize objects in its environ-
ment, such as people, cars, 
buildings, and more. It can 
use various techniques 
such as deep learning and 
image processing to detect 
objects.  

Image segmentation 
[YGL19]  

Imagine a precision agri-
culture scenario where 
you have a fleet of UAVs 
tasked with monitoring 
the health of crops in a 
large agricultural field. 

This algorithm separates an 
image into different re-
gions or segments based 
on similarities such as col-
our, texture, and shape. It 
can be used to detect and 
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The goal is to assess crop 
health, detect diseases or 
stress, and provide tar-
geted treatments to im-
prove crop yield while 
conserving resources. 

identify objects in an image 
and extract useful infor-
mation.  

Optical flow [CCW02] Imagine a scenario where 
you have a UAV tasked 
with navigating autono-
mously through an indoor 
environment or a densely 
populated urban area 
where GPS signals are un-
reliable or unavailable. 
The UAV needs to fly 
safely and avoid obstacles 
while reaching a specified 
destination. 

This algorithm analyses the 
motion of objects in an im-
age sequence, allowing the 
UAV to estimate the motion 
of its surroundings. It can 
be used for tasks such as 
tracking moving objects, 
detecting changes in the 
environment, and avoiding 
obstacles 

Pose estimation [ZLH19, 
FMS18] 

Imagine a scenario where 
you have a UAV tasked 
with autonomously navi-
gating and mapping the 
interior of a large indus-
trial facility or warehouse. 
The goal is to inspect the 
environment, locate spe-
cific objects, and build a 
detailed map for subse-
quent analysis or mainte-
nance. 

This algorithm determines 
the 3D position and orien-
tation of an object in an im-
age or video. It can be used 
to track the UAV's own po-
sition and orientation, as 
well as to detect and track 
other objects in the envi-
ronment 

Anomaly detection [AA18, 
CK20] 

Imagine a scenario where 
you have a fleet of UAVs 
responsible for monitor-
ing a network of pipelines 
and critical infrastructure, 
such as power lines, rail-
roads, or water supply 
systems. The goal is to de-
tect anomalies, including 
leaks, damages, or unau-
thorized access, to ensure 
the integrity and security 
of the infrastructure. 

This algorithm detects unu-
sual or unexpected events 
in an image or video se-
quence. It can be used for 
tasks such as identifying 
potential security threats, 
monitoring for changes in 
the environment, and de-
tecting anomalies in infra-
structure 
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Computer vision algorithms are essential for enabling UAVs to make sense of the visual information 
they capture and to perform a variety of tasks, from surveillance and inspection to search and rescue 
and more. 

Localization algorithms for UAVs 

Localization algorithms for unmanned aerial vehicles (UAVs) are designed to determine the UAV's 
position and orientation accurately in real-time. Accurate localization is critical for enabling the UAV 
to navigate through its environment, avoid obstacles, and complete its mission successfully.  

Localization 

Algorithm Challenge Approach 

GPS-based localization 
[WLL19] 

Imagine a precision agri-
culture scenario where 
you have a fleet of UAVs 
tasked with mapping a 
large agricultural field and 
performing precision 
farming operations, such 
as planting, fertilizing, or 
pest control. The goal is to 
optimize crop yield by ap-
plying treatments and re-
sources precisely where 
needed. 

This algorithm uses GPS 
signals to determine the 
UAV's position. It requires a 
GPS receiver on the UAV 
and a sufficient number of 
GPS satellites in view. How-
ever, GPS signals can be af-
fected by factors such as 
signal interference and ob-
stacles, which can reduce 
the accuracy of the UAV's 
position 

Inertial measurement unit 
(IMU)-based localization 
[KN18] 

Imagine a scenario where 
you have a UAV tasked 
with exploring and map-
ping the interior of a large 
and complex indoor envi-
ronment, such as a ware-
house, factory, or under-
ground facility, where GPS 
signals are unavailable. 
The goal is to create a de-
tailed map of the environ-
ment and navigate auton-
omously. 

This algorithm uses meas-
urements from an IMU, 
which typically includes ac-
celerometers and gyro-
scopes, to estimate the 
UAV's position and orienta-
tion. IMUs are often used in 
combination with GPS to 
improve localization accu-
racy, especially when GPS 
signals are weak or unavail-
able 

Visual-based localization 
[FCW18, CST19] 

Imagine a search and res-
cue mission in a complex 
and cluttered environ-
ment, such as an urban 
disaster area or a densely 

This algorithm uses visual 
features in the UAV's envi-
ronment, such as land-
marks or objects, to 
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forested region. The goal 
is to locate and rescue 
survivors or missing per-
sons in challenging condi-
tions. 

determine the UAV's posi-
tion and orientation. It can 
use various techniques 
such as feature extraction, 
image processing, and ma-
chine learning to estimate 
the UAV's position 

Radio-based localization 
[KMN16, SMM14] 

Imagine a scenario where 
you have a UAV tasked 
with monitoring and col-
lecting environmental 
data in remote and dense 
forests where GPS signals 
are unreliable or non-ex-
istent. The goal is to 
gather data about the 
forest's health, wildlife, 
and environmental condi-
tions. 

This algorithm uses radio 
signals, such as Wi-Fi or 
Bluetooth, to estimate the 
UAV's position. It requires a 
network of radio beacons 
to be installed in the envi-
ronment, and the UAV's 
position is determined 
based on the strength and 
timing of the radio signals 

SLAM-based localization 
[AVT+16] 

Imagine a scenario where 
you have a UAV tasked 
with autonomously ex-
ploring and mapping the 
interior of an unknown 
and potentially hazardous 
underground mine. The 
goal is to create a detailed 
map of the mine's layout 
and environmental condi-
tions while ensuring the 
safety of the UAV. 

This algorithm uses simul-
taneous localization and 
mapping (SLAM) tech-
niques to create a map of 
the UAV's environment 
while simultaneously esti-
mating the UAV's position 
and orientation. It can use 
various sensors such as 
cameras, LiDAR, and IMUs 
to create the map and esti-
mate the UAV's position 

Localization algorithms are critical for enabling UAVs to navigate through their environment accu-
rately and perform a variety of tasks, from surveillance and inspection to search and rescue and more. 

Control algorithms for UAVs 

These algorithms are designed to control the motion of the UAV and ensure that it flies safely and 
efficiently. These algorithms take input from various sensors such as accelerometers, gyroscopes, 
GPS, and cameras, and generate commands to control the UAV's motors or servos.  

Control 
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Algorithm Challenge Approach 

Proportional-Integral-De-
rivative (PID) control 
[IMI17, MB08] 

Imagine a scenario where 
you have a UAV equipped 
with a high-resolution 
camera and LiDAR sensor, 
tasked with capturing aer-
ial images and generating 
accurate 2D or 3D maps 
for surveying and map-
ping purposes. The goal is 
to capture images with 
minimal motion blur and 
ensure precise coverage 
of the survey area. 

This algorithm uses a feed-
back loop to adjust the 
UAV's motion based on its 
current state and desired 
state. The algorithm calcu-
lates an error signal, which 
is the difference between 
the desired state and the 
current state, and gener-
ates a control output based 
on this error signal. 

Model Predictive Control 
(MPC) [BKD18] 

Imagine a scenario where 
you have a racing UAV 
that needs to complete a 
challenging course with 
precision manoeuvres, 
such as navigating 
through tight turns, flying 
through gates, and avoid-
ing obstacles. The goal is 
to complete the course as 
quickly as possible while 
adhering to safety con-
straints and optimizing 
the UAV's trajectory. 

This algorithm predicts the 
UAV's future state based on 
its current state and envi-
ronmental conditions, and 
generates a control output 
accordingly. It takes into 
account various factors 
such as energy consump-
tion, time constraints, and 
environmental obstacles to 
generate an optimal or 
near-optimal control out-
put. 

Nonlinear Model Predictive 
Control (NMPC) [LBT11] 

Imagine a scenario where 
you have a UAV tasked 
with autonomously in-
specting and monitoring 
complex structures such 
as bridges, tall buildings, 
or wind turbines. The goal 
is to navigate the UAV to 
inspect specific areas of 
the structure, capture vis-
ual data, and make real-
time decisions to ensure 
safe and effective inspec-
tion. 

This algorithm is similar to 
MPC, but it uses a nonlinear 
model of the UAV's motion 
and dynamics to generate 
the control output. NMPC 
can handle nonlinear dy-
namics and constraints, and 
is often used for controlling 
UAVs in challenging envi-
ronments 
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Adaptive control [HMS05, 
TD13] 

Imagine a scenario where 
you have a UAV tasked 
with performing autono-
mous missions in extreme 
weather conditions, such 
as strong winds, turbu-
lence, heavy rain, or snow. 
The goal is to ensure safe 
and stable flight, maintain 
mission objectives, and 
adapt to unpredictable 
weather variations. 

This algorithm adjusts the 
control output based on 
changes in the UAV's dy-
namics and environmental 
conditions. It uses feedback 
from various sensors to 
continuously update the 
control output, allowing the 
UAV to adapt to changing 
conditions such as wind 
gusts or changes in payload 
weight.  

Reinforcement learning 
[DHG+20, TZZ+21, 
SWJ+20]. 

Imagine a scenario where 
you have a UAV tasked 
with autonomously pa-
trolling and monitoring a 
large area, such as a pe-
rimeter fence around a 
secure facility. The goal is 
to detect and respond to 
potential intrusions while 
optimizing patrol routes 
and conserving energy. 

This algorithm uses a trial-
and-error approach to 
learn the optimal control 
output for a given task. It 
uses feedback from the en-
vironment to adjust the 
control output and can 
learn to navigate complex 
environments and perform 
tasks such as obstacle 
avoidance and target track-
ing.  

 

Control algorithms are critical for enabling UAVs to fly safely and perform a variety of tasks, from 
surveillance and inspection to search and rescue and more. 
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3. Operation of UAV-based networks 

In this section we describe some of the main orchestration techniques used in unmanned aerial ve-
hicle (UAV) networks.  

Centralized orchestration 

Centralized Orchestration involves a centralized controller that oversees and coordinates the activi-
ties of all UAVs in the network. This controller can either be a human operator or an automated 
system, and it communicates with the UAVs through wireless communication links such as Wi-Fi or 
cellular networks [ZCR19, RLC18]. 

Through these links, the central controller assigns tasks, monitors progress, and adjusts behavior as 
needed. The UAVs themselves are equipped with various sensors and cameras that capture data and 
enable tasks such as mapping, inspection, and surveillance. They can also communicate with each 
other to coordinate activities and share information. 

In a Centralized Orchestration scenario, the central controller can optimize the UAV network's per-
formance using algorithms and protocols. It assigns tasks based on UAV location, capabilities, and 
availability and adjusts behavior to account for environmental changes such as weather or obstacles. 

Centralized Orchestration is particularly useful in scenarios requiring a high degree of coordination 
and control, such as large-scale search and rescue operations or military missions. However, it can 
be resource-intensive, as it necessitates a central controller to manage and monitor all UAV activities 
in the network. 

Distributed orchestration 

Distributed Orchestration is an alternative approach to coordinating unmanned aerial vehicle (UAV) 
networks, in contrast to Centralized Orchestration. In a Distributed Orchestration scenario, the UAVs 
work together as a team and communicate with each other to achieve a common goal [ZWW+16, 
SSZ+19]. 

Each UAV has some degree of autonomy and can make decisions based on local information and 
feedback from other UAVs in the network. For example, UAVs can communicate with each other 
through wireless links, such as Wi-Fi or cellular networks, and share information about their location, 
altitude, and speed. They can also share sensor data, such as images or video feeds, to build a more 
comprehensive understanding of the environment. 

In a Distributed Orchestration scenario, each UAV can be responsible for a specific task or area of 
coverage, such as surveillance or mapping. The UAVs can use algorithms and protocols to coordinate 
their activities, such as avoiding collisions or maximizing coverage of the area of interest. They can 
also adapt their behavior based on changing conditions in the environment, such as wind or obsta-
cles. 
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Distributed Orchestration can be particularly useful in scenarios where a high degree of flexibility 
and adaptability is required, such as in environmental monitoring or precision agriculture. However, 
it can also be more challenging to coordinate and monitor the activities of the UAVs in a distributed 
system, as each UAV has some level of autonomy and can make its own decisions. To address this, 
some distributed orchestration systems may still have a central controller to provide high-level guid-
ance and coordination to the UAVs. 

Hybrid Orchestration 

Hybrid Orchestration is a combination of both Centralized and Distributed Orchestration techniques, 
which attempts to harness the advantages of both approaches while mitigating their disadvantages. 

In a Hybrid Orchestration scenario, some UAVs may operate under Centralized Orchestration, while 
others may operate under Distributed Orchestration. For example, a subset of UAVs may be assigned 
specific tasks by a central controller, while the remaining UAVs may work together as a team and 
communicate with each other to achieve a common goal [IGL19, AYS+20].  

The Centralized Orchestration component of the system can provide high-level guidance and coor-
dination to the UAVs, while the Distributed Orchestration component can provide flexibility and 
adaptability to changing conditions in the environment. The UAVs can use wireless communication 
links, such as Wi-Fi or cellular networks, to exchange information with each other and with the central 
controller. 

The Hybrid Orchestration approach can be particularly useful in scenarios where a mix of tasks and 
objectives are required. For example, in a search and rescue operation, some UAVs may be respon-
sible for mapping the area and searching for survivors, while others may be responsible for delivering 
medical supplies or providing communication links to first responders. By combining Centralized and 
Distributed Orchestration techniques, the UAV network can be optimized to meet all of these objec-
tives. 

However, implementing a Hybrid Orchestration system can be more complex than using just one 
orchestration technique. It requires careful design and integration of the various components of the 
system, and can also require more resources and computational power to manage both centralized 
and distributed components. 

Multi-Agent Systems Orchestration 

Multi-Agent System (MAS) orchestration is a process of coordinating multiple agents (in this case, 
unmanned aerial vehicles or UAVs) to achieve a common goal. In the context of UAV networks, MAS 
orchestration involves managing the interactions and behaviors of multiple UAVs to carry out a spe-
cific mission, such as surveillance or package delivery. 

Here are some steps that might be involved in orchestrating a MAS of UAVs: 
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1. Mission Planning: The first step is to define the mission objectives and constraints, such as 
the area to be covered, altitude restrictions, and safety requirements. The mission planner 
uses this information to develop a high-level plan for the UAVs, including their flight paths, 
tasks, and roles [MKM19]. 

2. Task Assignment: Once the mission plan is in place, the task assignment module allocates 
specific tasks to each UAV based on their capabilities and availability. For example, one UAV 
might be assigned to collect visual data, while another is assigned to transport cargo [SLK19].  

3. Communication and Coordination: The UAVs need to communicate with each other to co-
ordinate their actions and avoid collisions. The communication protocol used must be reliable 
and secure, and the coordination module must be able to handle conflicts and adjust plans 
in real-time [BAL19].  

4. Control and Monitoring: The control and monitoring module is responsible for ensuring 
that the UAVs are following their assigned tasks and that their performance is within accepta-
ble limits. This involves monitoring their flight path, speed, altitude, and battery level, and 
adjusting their behavior as needed [MSB+17].  

5. Fault Detection and Recovery: In case of a malfunction or loss of communication, the MAS 
must be able to detect and recover from faults. This involves identifying the affected UAVs, 
re-assigning their tasks, and coordinating with the other UAVs to compensate for the loss 
[DLZ+19].  

MAS orchestration is a complex process that requires sophisticated algorithms and technologies to 
manage the interactions and behaviors of multiple UAVs. However, with the right tools and tech-
niques, it can enable efficient and effective operation of UAV networks in a variety of applications. 

Machine Learning Orchestration 

Machine learning orchestration is a process of managing the deployment, training, and optimization 
of machine learning models in a complex system such as unmanned aerial vehicles (UAVs) networks. 
In the context of UAVs, machine learning can be used for a variety of tasks, such as object detection, 
navigation, and anomaly detection. 

Here are some steps that might be involved in orchestrating a machine learning system for UAV 
networks: 

1. Data Collection: The first step in machine learning orchestration is to collect relevant data 
that can be used to train and test the machine learning models. This might include visual data 
from cameras mounted on the UAVs, sensor data, and other information [AYA+19].  

2. Model Selection: Once the data is collected, the next step is to select the appropriate ma-
chine learning model(s) to use for the specific task(s) at hand. This might involve choosing 
from a variety of models such as deep neural networks, decision trees, or support vector 
machines [KCA+19].  

3. Training and Testing: The selected model(s) must be trained and tested on the collected 
data. This involves partitioning the data into training and testing sets, and then using the 
training data to train the model and the testing data to evaluate its performance [ZGL+19].  
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4. Deployment: Once the model is trained and tested, it can be deployed to the UAVs in the 
network. This might involve installing the model on the UAVs or on a central server that com-
municates with the UAVs [ZWW+19]. 

5. Monitoring and Optimization: After the model is deployed, it must be monitored to ensure 
that it is performing well and making accurate predictions. If the model's performance is not 
satisfactory, it may need to be retrained or replaced with a different model [SV18]. 

6. Integration with MAS Orchestration: Finally, the machine learning model must be inte-
grated with the Multi-Agent System (MAS) orchestration to coordinate the actions of the 
UAVs. This might involve using the model's predictions to adjust the UAVs' flight paths or 
tasks in real-time [BPN14]. 

Machine learning orchestration is a critical component of UAV networks, enabling the UAVs to per-
form complex tasks and adapt to changing environments in real-time. 

It is worth mentioning that the choice of orchestration technique depends on the specific require-
ments of the UAV network and the tasks that need to be performed. Some tasks may require cen-
tralized control and coordination, while others may benefit from a more distributed or hybrid ap-
proach. Machine learning orchestration can be particularly useful in complex environments where 
the UAVs need to adapt to changing conditions and learn from their experiences. 
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4. Communication for UAVs 
In this section, we delve into the synergy between UAVs and orchestration, specifically focusing on 
connectivity. We provide a visual representation of this connection in the following figure. While the 
orchestrator-controller link was briefly mentioned in the previous deliverable (6G-SORUS-DRONE), 
we now explore it in depth.  

 
FIGURE 2. LINK BETWEEN THE ORCHESTRATION AND THE CONTROLLER OF THE UAV 

If we zoom in the link, we find several components that empower the connection between the UAV 
and the orchestrator. These component are mainly: Communication Protocol, Telemetry Data Stream, 
Command and Control Interface (RESTful API), Mission Planning and Execution Module, Waypoint 
Management, Safety and Emergency Procedures, Data Encryption and Security, Error Handling and 
Recovery and Remote Control Override.  
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FIGURE 3. DIFFERENT CONNECTIONS BETWEEN THE ORCHESTRATOR AND THE CONTROLLER OF THE UAV. 

 

1. Communication Protocol: This establishes the rules and format for data exchange between 
the UAV and the orchestrator. Common protocols include MQTT, RESTful APIs, and UDP, 
ensuring efficient communication. 

2. Telemetry Data Stream: This continuous flow of data from the UAV to the orchestrator 
provides critical information such as GPS coordinates, altitude, battery status, sensor 
readings, and overall UAV health. 

3. Command and Control Interface: It serves as a standardized method for the orchestrator 
to send commands to the UAV. This interface allows for actions like takeoff, landing, waypoint 
navigation, and altitude adjustments to be initiated. 

4. Mission Planning and Execution Module: Within the UAV, this module interprets high-level 
mission plans from the orchestrator. It employs algorithms like a pathfinding to plan routes, 
avoid obstacles, and adapt to changes in real-time. 

5. Waypoint Management: The UAV controller manages a list of waypoints provided by the 
orchestrator. These waypoints guide the UAV to specific locations, ensuring it follows the 
desired path. 

6. Safety and Emergency Procedures: These predefined procedures, such as return-to-home 
(RTH) in low battery situations, enhance UAV safety and allow it to respond to critical issues 
promptly. 

7. Data Encryption and Security: Security measures, including AES-256 encryption and 
TLS/SSL protocols, protect data integrity and confidentiality during communication between 
the orchestrator and UAV. 

8. Error Handling and Recovery: Both the orchestrator and UAV controller employ 
mechanisms to handle communication failures, ensuring reliable data transfer and mission 
continuity. 
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9. Remote Control Override: In cases of emergency or loss of communication, a remote-
control station can take manual control of the UAV, ensuring human intervention when 
necessary. 

4.1 Integration of UAV-networks via SDN/NFV 
SDN and NFV are intricately intertwined and complement each other seamlessly. SDN plays a pivotal 
role in benefiting NFV by providing the capability to create programmable network connections 
between Virtual Network Functions (VNFs), which in turn enables more advanced traffic 
management. Conversely, NFV supports SDN by virtualizing components like SDN controllers, 
essentially treating them as VNFs that can be executed in the cloud. This virtualization facilitates the 
dynamic relocation of SDN controllers to optimal locations as needed. 

The integration of Software-Defined Networking (SDN) in Unmanned Aerial Vehicle (UAV) networks 
is appealing due to its numerous advantages. UAVs are often treated as SDN switches, and this ap-
proach is well-suited to address the unique challenges of UAV networks: 

1. Resource Limitations: UAV networks have restricted communication and resource usage 
capabilities. 

2. High Traffic Demands: Specific scenarios can lead to high traffic demands, consuming more 
energy and overloading the network. 

3. Intermittent Connectivity: The mobility of UAVs leads to intermittent connectivity and net-
work fragmentation. 

4. Global Network View: Efficient UAV deployment requires a global view of the network. 

SDN integration in UAV networks offers solutions to these challenges without completely redesign-
ing the network architecture. Key solutions include: 

• Centralized Control: SDN's centralized control can enhance resource utilization and quality 
of service (QoS). It requires constant updates of network topology to maintain UAV-SDN 
controller connectivity. 

• Flexible Resource Allocation: SDN enables flexible reconfiguration and allocation of radio 
resources among UAV swarms through ground-based centralized controllers. 

• Load Balancing: SDN optimizes load balancing between UAVs and ground-based Base Sta-
tions (BSs). 

• Efficient Traffic Routing: SDN controllers facilitate efficient routing of traffic among UAVs, 
preventing losses and network congestion. 

• Dynamic UAV Management: SDN allows dynamic adjustment of 3D UAV movements for 
optimized location management, polling, and paging. 

We next analyze different SDN-based architectures that aim to flexibly manage UAV networks.  

1. SDN-based routing: it centralizes control over routing decisions, separating the control 
plane from the data plane. This approach allows for dynamic and flexible routing by utilizing 
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a centralized controller, such as an OpenFlow controller, which maintains a global view of the 
network. SDN employs flow-based routing, making decisions based on packet characteristics, 
enabling real-time adjustments for optimal traffic management, traffic engineering for 
resource optimization, and policy-based routing to enforce specific rules or security 
requirements. Examples of SDN-based routing applications include data center optimization, 
dynamic routing in Software-Defined Wide Area Networks (SD-WANs), efficient Internet 
Service Provider (ISP) traffic management, and scalable cloud network resource allocation 
[RSL+17, QSK+19].  

2. SDN-based monitoring: it leverages the centralized control and programmability of 
Software-Defined Networking to gain deep insights into network traffic, performance, and 
security. In SDN, monitoring functions can be orchestrated and applied dynamically, allowing 
network administrators to collect real-time data and respond to network events more 
effectively. For instance, using SDN, one can implement traffic analysis tools that monitor 
specific flows or applications, detect anomalies, and reroute traffic for security purposes, such 
as isolating a compromised segment of the network. Additionally, SDN-based monitoring 
facilitates Quality of Service (QoS) assurance by continuously monitoring and optimizing 
traffic flows to meet service-level agreements (SLAs), ensuring a high-quality user experience 
[ZSG+18, CLT+18].  

3. SDN-based coverage: This approach is particularly valuable in wireless and mobile networks, 
such as 5G and IoT deployments. For instance, in a 5G network, SDN can dynamically allocate 
resources to ensure consistent and efficient coverage for connected devices. It can 
intelligently reroute traffic and adjust network parameters to address coverage gaps or 
interference. In IoT applications, SDN-based coverage can prioritize and manage 
communication for a vast number of devices efficiently. Furthermore, in rural or remote areas, 
SDN can enable cost-effective deployment by allowing network operators to adapt and scale 
coverage as needed, improving connectivity in underserved regions [AEL+17, SPD+13] 
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5. Summary and Conclusions 
The deployment of UAV-based networks presents various challenges that require the development 
of sophisticated algorithms to address them. The state-of-the-art algorithms for UAV-based 
networks include deployment, mobility, routing, and resource allocation algorithms. These 
algorithms aim to optimize network coverage, capacity, and efficiency while minimizing energy 
consumption and interference. However, several challenges and open research issues remain, such 
as the integration of UAV-based networks with existing infrastructure, the management of 
interference, and the security and privacy concerns. Further research and development in algorithm 
design and optimization are crucial to overcome these challenges and fully realize the potential of 
UAV-based networks. 
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