

UNICO I+D Project 6G-SORUS-DRONE

SORUS-DRONE-A2.1-E1

Perfilado de UAV Versión inicial

Abstract

The SORUS-DRONES project focuses on the challenges posed by the integration of unmanned aerial vehicles (UAVs, UAS, drones) with virtualized radio access networks (vRAN) and reconfigurable intelligent surfaces (RIS) in the deployment and operation of a B5G network.

The process of analyzing different solutions and defining prototypes for validation testing is carried out in the PROFILING phase. This document presents the conceptual and functional development of this PROFILING phase, as well as the preliminary results of the initial tests aimed at creating the tools required to achieve the goals of the project.

Propiedades del documento

Número de documento	SORUS-DRONE-A2.1-E1
Título	Perfilado de UAV
Editor	Miguel Rosa (AEROTOOLS)
Responsable del documento	Miguel Rosa (AEROTOOLS)
Equipo de redacción	Jeremy Comellas, Alberto Cristóbal Granda, Pablo
	Gutierrez Benavides, Jonathan Martínez Díez
	(AEROTOOLS)
Target dissemination level	
Status of the document	
Version	2.0
Delivery date	29/09/2023
Actual delivery date	

Revisión

Descargo de Responsabilidad

Este documento ha sido generado en el contexto del 6G-SORUS-XXX. La investigación que ha llevado a estos resultados ha recibido financiación del Ministerio de Asuntos Económicos y Transformación Digital de España y de la Unión Europea-NextGenerationEU a través del programa UNICO 5G I+D.

Toda la información en este documento se proporciona "tal cual" y no se ofrece ninguna garantía de que la información sea adecuada para algún propósito en particular. El usuario utiliza la información bajo su propio riesgo y responsabilidad.

Contenido

Lista	a de Gráficos	4
Lista	a de Abreviaturas y Acrónimos	5
Res	umen Ejecutivo	6
1.	Introducción	7
2.	Casos de Uso. Parametrización	8
3.	Perfilado: enfoque y desarrollo conceptual del MPP	15
4.	Modelo de Predicción de Prestaciones (MPP)	18
5.	Resultados de primera iteración del MPP	25
5.1.	Pruebas en apartado PLATAFORMA	25
5.2.	Pruebas en apartado PROPULSIÓN	26
5.3.	Pruebas en apartado ALIMENTACIÓN	39
5.4.	Pruebas en apartado ELECTRÓNICA	41
Refe	erencias	47

Lista de Gráficos

igura 1 Tablas descriptivas de los Casos de Uso	14
igura 2 Diagrama conceptual del MPP	16
igura 3 Diagrama funcional del MPP	19
igura 4 Diagrama funcional de la Plataforma de Vuelo	20
igura 5 Diagrama funcional de la Propulsión	21
igura 6 Diagrama funcional de la Alimentación	22
igura 7 Diagrama funcional de la Electrónica y Comunicaciones	23
igura 8 Diagrama funcional de la Carga de Pago	24
igura 9. Pruebas del grupo propulsor	27
igura 10. Cuadro resumen del grupo propulsor	28
igura 11 Resultados del ensayo del conjunto: T Motor 4006-23 kv380 - Hélice 16.4x5.9 - Batería 4:	S 29
igura 12. Pruebas con motor T Motor 4006-23 kv380	
igura 13 Resultados del ensayo del conjunto: T Motor 4010 kv580 - Hélice 14x4.8 - Batería 6S	31
Figura 14. Pruebas con motor T Motor 4010 kv580	
igura 15 Resultados del ensayo del conjunto: T Motor 4014 kv400 - Hélice 17x5.8 - Batería 6S	
igura 16. Pruebas con motor T Motor 4014 kv400	
igura 17. Comparativa de eficiencia de los motores	
Figura 18. Comparativa de temperatura de T Motor MN 4014	
Figura 19. Gráfico de la eficiencia del T-motor 4014 400 KV en función de las hélices	
Figura 20 Tabla de resultados de ensayos de baterías Li-Po	
Figura 21 Tabla de resultados de ensayos de baterías de Li-lon	
igura 22. Esquema de conexionado entre Pixhawk y Raspberry Pi con dispositivo 4G LTE USB	
igura 23 Prueba de Hardware del conjunto Pixhawk, la Raspberry Pi y el dispositivo 4G LTE USB	42

Lista de Abreviaturas y Acrónimos

4C LTF	Founds Consention Language conductions			
4G-LTE	Fourth Generation - Long-term evolution			
45	4 Cells			
5G	Fifth-generation			
6G	Sixth Generation of Wireless Communication Technology			
6S	6 Cells			
B5G	Beyond 5G			
BEC	Battery Eliminator Circuit			
BS	Base Station			
BVLOS	Beyond Visual Line of Sight			
GIS	Geographical Information System			
gNB	Next Generation NodeB			
IA	Inteligencia Artificial			
ID	Identity			
IP	Internet Protocol			
KPIs	Key Performance Indicators			
Li-lon	Batería de iones de litio			
Li-Po	Batería de polímero de litio			
LoS	Line of Sight			
MPP	Modelo Predicción Prestaciones			
MTOW	Maximal Take Off Weight			
PWM	Pulse-Width Modulation			
RIS	Reconfigurable Intelligent Surface			
RP	Raspberry			
SD	Secure Digital			
UAM	Urban Air Mobility			
UAS	Unmanned Aerial System			
UAV	Unmanned Aerial Vehicle			
UE	User Equipment			
UFW	Uncomplicated Firewall			
USB	Universal Serial Bus			
VPN	Red Privada Virtual			
vRAN	Virtualized Radio Access Network			
VTOL	Vertical Take-Off and Landing			
Wifi	Red inalámbrica de área local			

Resumen Ejecutivo

El proyecto SORUS-DRONES se centra en los retos que plantea la integración de vehículos aéreos no tripulados (UAV, UAS, drones) con redes de acceso radioeléctrico virtualizadas (vRAN) y superficies inteligentes reconfigurables (RIS) en el despliegue y funcionamiento de una red B5G.

El diseño y desarrollo de la solución UAV se realizará atendiendo a las necesidades de los casos de uso que permitirán validar los desarrollos alcanzados en los otros subproyectos (vRAN y RIS), así como al estado del arte de la tecnología relacionada con los drones, las comunicaciones y la IA-Edge Computing.

El proceso de análisis de las diferentes soluciones y definición de los prototipos que permitirán realizar las pruebas de validación se desarrollan en la fase de PERFILADO.

El presente documento expone el desarrollo conceptual y funcional de esta fase de PERFILADO, así como los resultados preliminares de las primeras pruebas encaminadas a conformar las herramientas requeridas para la consecución de los objetivos del proyecto.

1. Introducción

Una vez definido un diseño preliminar del UAV cuyas características se adaptan a las diferentes aplicaciones previamente definidas, y que se ha previsto como PROTOTIPO INICIAL, es necesario estudiar la eficiencia y rendimiento de los sistemas y del conjunto, así como desarrollarlos hacia el PROTOTIPO FINAL. Esta es la misión de la fase de PERFILADO, proceso que, mediante la recopilación de datos a través de simulaciones y pruebas, permitirá conocer el comportamiento del UAV en las diferentes condiciones de vuelo que demandan los escenarios derivados de los Casos de Uso. De esta manera se pueden optimizar parámetros como la autonomía, el alcance, la capacidad de vuelo estacionario o el consumo de energía, que son las prestaciones más restrictivas a la hora del diseño de una aeronave no tripulada.

Para poder articular este proceso de PERFILADO, con el estudio y análisis de variables de tan amplio espectro como las que se van a definir, es conveniente disponer de una herramienta que proporcione el soporte conceptual y metodológico adecuado para llevar el proceso a buen término.

Esta herramienta se ha concretado en este proyecto en el MODELO DE PREDICCIÓN DE PRESTACIONES (MPP) que se describe en este documento, el cual servirá de guía en las diferentes líneas de trabajo que se seguirán en los meses venideros.

Con este MPP se pretende atender las demandas de cada uno de los apartados en los que se ha dividido funcionalmente el UAV, las cuales se describen más adelante: PLATAFORMA DE VUELO, SISTEMAS DE PROPULSIÓN, SISTEMA DE ALIMENTACIÓN DE ENERGÍA, ELECTRÓNICA Y COMUNICACIONES y CARGA DE PAGO.

2. Casos de Uso. Parametrización

El estudio y análisis del estado del arte de las tecnologías ha permitido generar una serie de espacios definidos que sirven de referencia continua a lo largo del proyecto. Estos espacios son los Casos de Uso, que definen una serie de escenarios para el que se aportan soluciones con arreglo a los desarrollos buscados en el proyecto. Además de permitir establecer unos parámetros medibles (KPIs) para valorar su conformidad con los objetivos que se quieren alcanzar.

Dado el ámbito de innovación en el que se enmarca el proyecto, es importante tener en cuenta que estos Casos de Uso sufrirán una revisión permanente y estarán sujetos a cambios y ajustes que permitan, desde incorporar nuevas tecnologías que surjan o se consoliden durante los desarrollos hasta modificar aspectos que puedan suponer un freno a los objetivos del proyecto.

Los cinco Casos de Uso definidos en fases anteriores y explicados en el entregable A1.2-E1 son los siguientes:

- 1. La extensión dinámica de Cobertura de Red B5G/6G en áreas extensas.
- 2. La extensión estática de cobertura de red B5G/6G en zonas de emergencia.
- 3. El soporte de cobertura y orquestación a enjambre de drones colaborativos operando en un mismo escenario.
- 4. La monitorización y levantamiento de mapas de cobertura para la generación de cartografía de red B5G/6G que permita la gestión avanzada y la respuesta temprana a situaciones que demanden extensión de cobertura.
- 5. La gestión avanzada de inspecciones de activos con drones para el procesamiento de datos acelerado y la obtención de resultados casi en tiempo real.

En función de su relación con la tecnología de referencia en el proyecto, las redes 5G/B5G/6G, se pueden agrupar en dos categorías principales:

APORTE y/o SOPORTE DE RED 5G/B5G	USO DE RED 5G/B5G
 La extensión estática y dinámica de Cobertura de Red B5G/6G en diferentes escenarios. La monitorización y levantamiento de mapas de cobertura de red B5G/6G. 	 La gestión avanzada de inspecciones de activos con drones. La creación de un entorno de operación con drones colaborativos.

Se considera necesario mencionar en este punto que, dada la similitud de alcance entre los Casos de Uso 1 y 2 para la extensión de cobertura de red, y a pesar de que las soluciones UAV previstas sean distintas, se analizará la posibilidad de agruparlos en un solo caso de uso con objeto de hacer más ágil el proceso de análisis de la solución.

En las siguientes tablas se recogen los diferentes factores que definen, influyen o limitan los escenarios que se deducen de los casos de uso. La parametrización de estos factores, de forma que se puedan integrar en el proceso de análisis de soluciones asociado a la fase de PERFILADO, con su inclusión en el proceso de predicción de prestaciones que se define en este documento, serán relevantes para alcanzar a concretar y comparar entre sí las soluciones adecuadas para cada caso.

Num Caso Uso	Caso de Uso	Escenario:	Requisitos:	Tecnologías aplicables:	Factores relevantes:	Limitaciones:	Solución propuesta
#1	Extensión Dinámica de Cobertura de Red B5G/6G en áreas extensas.	Zona geográfica extensa con cobertura de red limitada por características de la orografía o por la existencia de construcciones en altura, donde se realizan operaciones con drones de forma repetida y frecuente, y se presenta una alta demanda de servicios.	Proporcionar cobertura de red en la zona de referencia con dispositivos que tengan movilidad y puedan adaptarse a escenarios complejos.	Drones con capacidad de carga, autonomía y alcance extendidos.	Prestaciones del dron para atender requisitos contradictorios entre sí.	Autonomía de vuelo.	Multirrotor con alta capacidad de carga.
		Ejemplos: la prestación de servicios en ciudades o la prestación de servicios en zonas de montaña.	Alcance operativo de cierta entidad.	Navegación avanzada.	Comunicaciones.	Alcance de comunicaciones.	Sistema de alimentación híbrido que le dote autonomía extendida.
			Autonomía de vuelo extendida sobre parámetros habituales.	Comunicación B5G/6G.	Flexibilidad y agilidad operativa para el despliegue.	Capacidad de carga.	Integración de SORUS BOX como paquete de comunicación y computación avanzada.
				Sistemas de propulsión híbridos.			Antenas RIS embarcadas e integradas

Num Caso Uso	Caso de Uso	Escenario:	Requisitos:	Tecnologías aplicables:	Factores relevantes:	Limitaciones:	Solución propuesta
#2	Extensión estática de cobertura de red B5G/6G en zonas de emergencia.	Escenario localizado en situación de emergencia, donde la cobertura de red está limitada por averías o se produce saturación por concentración de un alto número de usuarios.	Proporcionar cobertura de red en un área específica con alta demanda en periodos concretos y radio de acción reducido.	Drones con alimentación de energía continua y capacidad de carga.	Prestaciones del dron en funcionamiento continuo.	Alcance limitado de comunicaciones.	Multirrotor con alta capacidad de carga.
		Se demandan servicios de comunicación que garanticen cobertura de red con estabilidad de conexión, ausencia de interferencias o continuidad de servicio.	Agilidad operativa.	Comunicación B5G/6G.	Flexibilidad y agilidad operativa para el despliegue.	Agilidad operativa presenta alta demanda de recursos y activos.	Sistema de alimentación por cable que le dote autonomía para operación continua.
		Ejemplos: zonas en situación catastrófica como incendios, inundaciones o accidentes; eventos multitudinarios.	Operación continua.	Alimentación por cable.		Capacidad de carga.	Integración de SORUS BOX como paquete de comunicación y computación avanzada. Antenas RIS embarcadas e
							integradas

Num Caso Uso	Caso de Uso	Escenario:	Requisitos:	Tecnologías aplicables:	Factores relevantes:	Limitaciones:	Solución propuesta
#3	Soporte de cobertura y orquestación a enjambre de drones colaborativos operando en un mismo escenario.	Escenario localizado donde operan un grupo de drones de forma coordinada.	Proporcionar cobertura de red en la zona de referencia con dispositivos que tengan movilidad y puedan adaptarse a escenarios complejos.	Drones con capacidad de carga, autonomía y alcance extendidos.	Prestaciones del dron para atender requisitos contradictorios entre sí.	Autonomía de vuelo.	Multirrotor con alta capacidad de carga.
		Navegación avanzada de los drones para operar en escenario U-Space complejo.	Alcance operativo de cierta entidad.	Navegación avanzada.	Comunicaciones.	Alcance de comunicaciones.	Sistema de alimentación híbrido que le dote autonomía extendida.
		Funciones avanzadas de red, IA y computación.	Autonomía de vuelo extendida sobre parámetros habituales.	Comunicación B5G/6G.	Integración de sistemas complejos y computación distribuida.	Capacidad de carga.	Integración de SORUS BOX como paquete de comunicación y computación avanzada y orquestación de drones en operación colaborativa.
		Ejemplos: operaciones UAM en entorno urbano.	Se requiere de coordinación centralizada.	IA, Edge Computing.	Flexibilidad y agilidad operativa para el despliegue.	Despliegue de funcionalidades.	Antenas RIS embarcadas e integradas

Num Caso Uso	Caso de Uso	Escenario:	Requisitos:	Tecnologías aplicables:	Factores relevantes:	Limitaciones:	Solución propuesta
#4	Monitorización y levantamiento de mapas de cobertura para la generación de cartografía de red B5G/6G que permita la gestión avanzada y la respuesta temprana a situaciones que demanden extensión de cobertura.	Escenario localizado en situación de emergencia, donde la cobertura de red está limitada por averías o se produce saturación por concentración de un alto número de usuarios.	Proporcionar cobertura de red en un área específica con alta demanda en periodos concretos y radio de acción reducido.	Drones con capacidad de carga, autonomía y alcance extendidos.	Prestaciones del dron para atender requisitos contradictorios entre sí.	Autonomía de vuelo.	Multirrotor con alta capacidad de carga.
		Se busca un conocimiento de detallado de la distribución de la cobertura de red para la toma rápida de decisiones en situaciones concretas.	Agilidad operativa.	Navegación avanzada.	Flexibilidad y agilidad operativa para el despliegue.	Alcance de comunicaciones.	Sistema de alimentación híbrido que le dote autonomía extendida.
		Ejemplos: zonas en situación catastrófica como incendios, inundaciones o accidentes.	Funciones avanzadas de red, IA y computación.	Comunicación B5G/6G.	Procesamiento basado en IA.	Capacidad de carga.	Integración de SORUS BOX como paquete de comunicación y computación avanzada.
				IA, Edge Computing, GIS.		Despliegue de funcionalidades.	Antenas RIS embarcadas e integradas
							Computación IA embarcadas para procesamiento avanzado.

Num Caso Uso	Caso de Uso	Escenario:	Requisitos:	Tecnologías aplicables:	Factores relevantes:	Limitaciones:	Solución propuesta
#5	Gestión avanzada de inspecciones de activos con drones para el procesamiento de datos acelerado y la obtención de resultados casi en tiempo real.	Escenario localizado de activo a inspeccionar con generación de una elevada cantidad de datos complejos (imágenes, localización).	Proporcionar cobertura de red en un área específica con alta demanda de transferencia de datos y radio de acción variable.	Drones con capacidad de carga, autonomía y alcance extendidos.	Prestaciones del dron para atender requisitos contradictorios entre sí.	Autonomía de vuelo.	Multirrotor con alta capacidad de carga.
		Se busca un procesamiento acelerado de los datos para la obtención de resultados casi en tiempo real.	Alcance operativo de cierta entidad.	Navegación avanzada.	Flexibilidad y agilidad operativa para el despliegue.	Alcance de comunicaciones.	Sistema de alimentación híbrido que le dote autonomía extendida.
		Ejemplos: activos industriales como entornos portuarios, grandes industrias, plantas fotovoltaicas de gran tamaño.	Funciones avanzadas de red, IA y computación.	Comunicación B5G/6G.	Procesamiento basado en IA.	Capacidad de carga.	Integración de SORUS BOX como paquete de comunicación y computación avanzada.
				IA, Edge Computing, GIS.		Despliegue de funcionalidades.	Sensórica con computación IA embarcadas para procesamiento avanzado.

Figura 1 Tablas descriptivas de los Casos de Uso

3. Perfilado: enfoque y desarrollo conceptual del MPP

El proceso de obtención y análisis de soluciones del proyecto se ha definido en base a tres fases diferenciadas pero planteadas como una continuación una de la anterior: DISEÑO, PERFILADO y PROTOTIPADO. El estudio inicial del estado del arte y del análisis de casos de uso factibles que se realiza en la primera fase de DISEÑO se ha plasmado en los Entregables, como un punto de partida para un proceso concebido como iterativo, es decir, sometido a continua revisión y validación.

Siguiendo con este enfoque, en esta sección se expone la forma en que se aborda la generación de un primer perfilado de la solución UAV que se busca, así como la metodología que se ha concebido y se plantea para la aplicación sistemática de este proceso de mejora de la solución que corresponde a la fase de PERFILADO.

Se introduce aquí la herramienta MPP, Modelo de Predicción de Prestaciones, como marco de trabajo adecuado para el análisis de diferentes soluciones en los apartados que conforman el UAV y la obtención ágil de resultados que permitan valorar la idoneidad o grado de adecuación de las soluciones en estudio.

Con este MPP se pretende definir un marco de referencia, que aporte objetividad al proceso de diseño y perfilado y permita comparar soluciones de distinta naturaleza o analizadas en momentos distintos. Como ejemplo, se busca estandarizar al máximo la comparativa entre soluciones basadas en plataformas Multirrotor con diferentes configuraciones de Brazos+Motor y VTOL; o bien poder comparar soluciones definidas en momentos en que la tecnología pueda evolucionar y proporcionar un elemento disruptivo o significativamente más evolucionado.

En el siguiente gráfico se muestra el diagrama conceptual que da forma al MPP. La disposición en tres dimensiones de las diferentes variables que influyen en la elección de soluciones se corresponde con la interrelación existente entre dichas variables y para los diferentes escenarios generados por los Casos de Uso. Para un escenario fijado, los requisitos que debe cumplir la solución en estudio en los términos que se definan (como ejemplo, los clásicos alcance, autonomía, capacidad de carga...) determinarán las prestaciones exigidas en cada apartado del UAV (Plataforma, Propulsión...) y con ello las especificaciones de la solución.

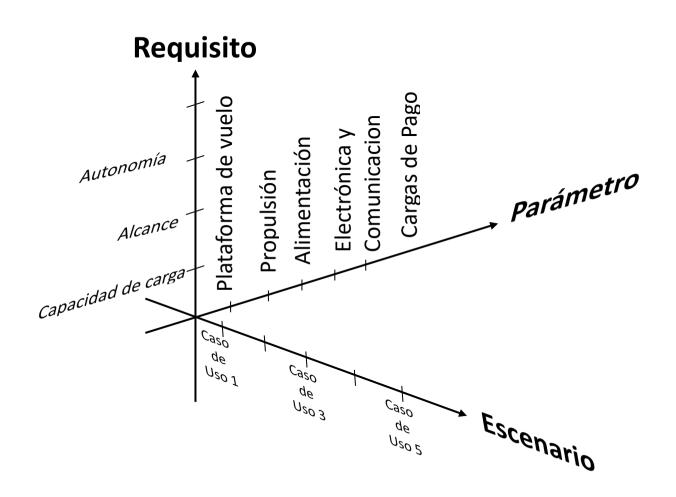


Figura 2 Diagrama conceptual del MPP

Atendiendo a la complejidad del entorno de desarrollo que se afronta, y con objeto de realizar un análisis adecuado a las características del UAV, se ha dividido el UAV en una serie de apartados que reúnen a un conjunto de sistemas o elementos del mismo. Estos apartados, que se explican en el siguiente punto, recogen el conjunto de elementos relevantes del UAV que se explicaron en el documento A3.2-E1 Diseño del UAV, agrupados de forma que resulte factible su análisis.

Se han definido 5 apartados principales dentro del UAV, que se estudiarán y analizarán de forma específica en el MPP que se está generando:

- PLATAFORMA DE VUELO, conteniendo los elementos estructurales (chasis, brazos, tren de aterrizaje, elementos de soporte de la carga, etc), así como los sistemas de seguridad o auxiliares que pudieran instalarse por necesidades operativas o de requisitos del escenario en estudio (como es el caso de protecciones de hélice, paracaídas, etc.).
- **SISTEMA DE PROPULSIÓN**, conteniendo los elementos que proporcionan el empuje y prestaciones para el vuelo del UAV, es decir, el conjunto de motores + hélice + variadores, y sus diferentes combinaciones.
- **SISTEMA DE ALIMENTACIÓN**, incluyendo aquellos elementos que proporcionan la energía al sistema de propulsión, y que puede incorporar tecnologías como las baterías, el motor de combustión o los sistemas basados en hidrógeno.
- ELECTRÓNICA Y COMUNICACIONES, incluyendo la electrónica de vuelo, los sistemas de control y navegación, así como las comunicaciones C2 y de transferencia de datos desde los sistemas embarcados.
- **CARGA DE PAGO**, incluyendo los sistemas embarcados que proporcionan la funcionalidad principal al UAV (antenas, cámaras, etc.)

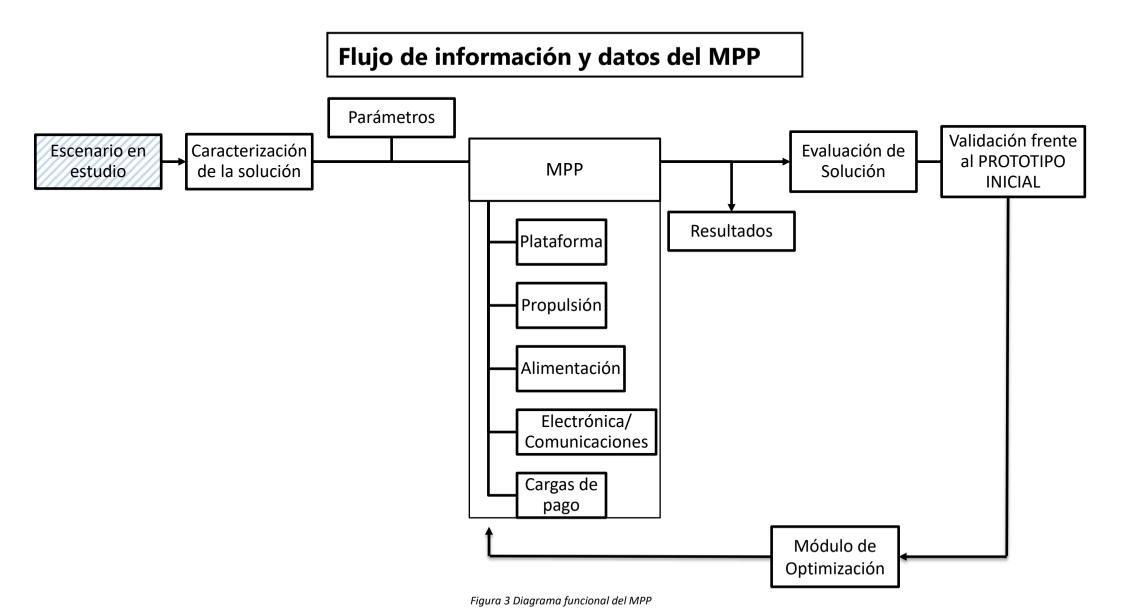
Para cada apartado, se realizarán los estudios previos (de mercado, del estado del arte...), pruebas o ensayos específicos y análisis desde el punto de vista funcional o socioeconómico, que proporcionen datos e información, los cuales permitirán realizar una predicción del comportamiento o de las prestaciones de la solución analizada en cada caso.

4. Modelo de Predicción de Prestaciones (MPP)

El MPP planteado pretende sistematizar el análisis y desarrollo de las soluciones óptimas para el proyecto. Como ya se ha mencionado, presenta dificultades conceptuales por los diferentes planos en que es obligado moverse, pero también resulta complicado en su diseño funcional y en la habilitación de herramientas de análisis, debido a la diferente naturaleza de las variables a tener en cuenta.

En el Diagrama Funcional que se muestra en la página siguiente, se puede observar el Flujo de Información y datos que se va a seguir para la obtención de una valoración de las soluciones en estudio y su adecuación a los objetivos del proyecto_

- desde la fase inicial de requisitos generados por el escenario en estudio y la aportación de soluciones caracterizadas por diferentes parámetros;
- estos parámetros cuantitativos son con los que se trabajará en el MPP junto con las variables cualitativas que conforman las soluciones en estudio;
- los diferentes módulos del MPP, que se define posteriormente, analizarán cada apartado específico y proporcionarán una estimación de los parámetros introducidos;
- con los resultados se procederá a realizar una evaluación y validación frente al PROTOTIPO INICIAL, que servirá como referencia para categorizar las soluciones en estudio.


En los módulos relativos a cada apartado, se realizarán los estudios previos (de mercado, del estado del arte...), pruebas o ensayos específicos y análisis desde el punto de vista funcional o socioeconómico, que proporcionen datos e información, los cuales permitirán realizar una predicción del comportamiento o de las prestaciones de la solución analizada en cada caso.

Dentro del MPP se ha diseñado un diagrama funcional para cada apartado, que facilite la toma de datos, su análisis, optimización y generación de resultados en los diferentes aspectos que influyen en cada uno de ellos. De tal forma que se disponga de un esquema de predicción en base a los parámetros de entrada, y que se pueda validar el resultado y así optimizar el proceso de valoración de soluciones alternativas.

Para la **PLATAFORMA DE VUELO**:

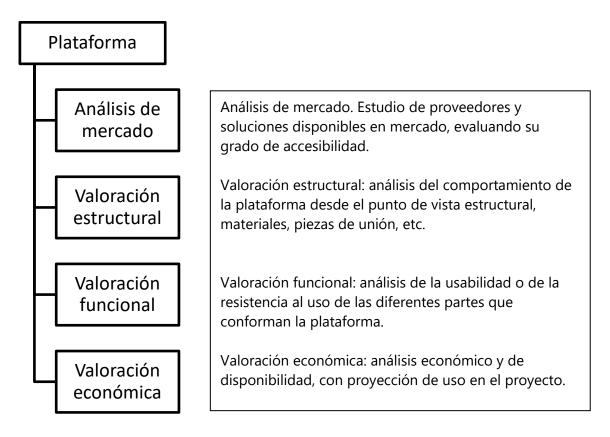


Figura 4 Diagrama funcional de la Plataforma de Vuelo

Para la **PROPULSIÓN**:

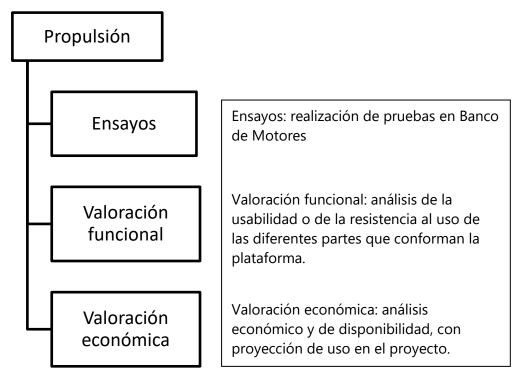


Figura 5 Diagrama funcional de la Propulsión

Para la **ALIMENTACIÓN**:

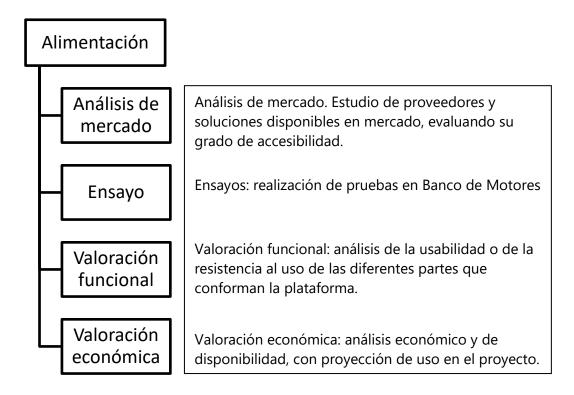


Figura 6 Diagrama funcional de la Alimentación

Para la ELECTRÓNICA Y COMUNICACIONES:

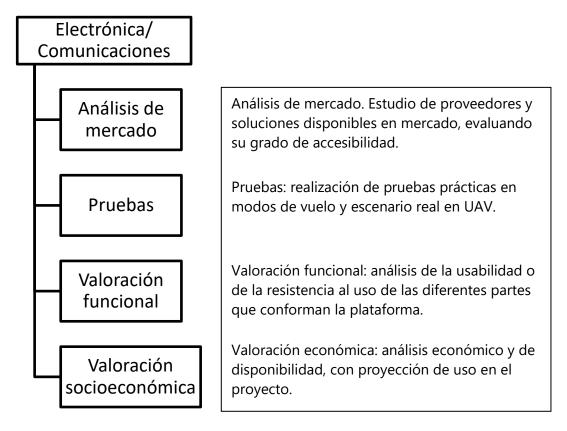


Figura 7 Diagrama funcional de la Electrónica y Comunicaciones

Para la CARGA DE PAGO:

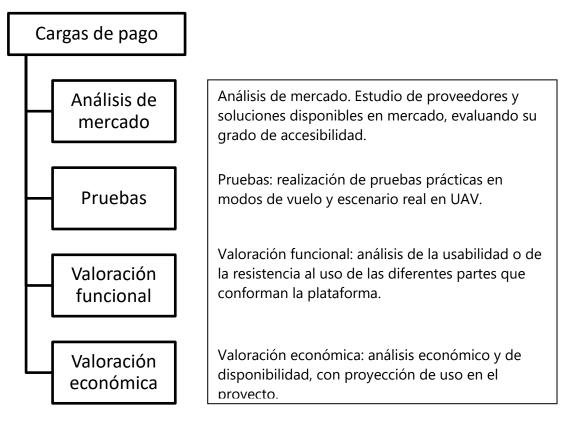


Figura 8 Diagrama funcional de la Carga de Pago

5. Resultados de primera iteración del MPP

En el momento de elaborar y presentar este documento, se trabaja en el proceso de diseño y elaboración del MPP, para el cual se están realizando una serie de pruebas y ensayos de determinadas configuraciones en todos los APARTADOS, que servirán como referencia para la generación del PROTOTIPO INICIAL y para la validación de los resultados futuros del Modelo en el proceso de PERFILADO.

A continuación, se muestran ejemplos de las pruebas y primeros resultados que se van obteniendo en los apartados que así lo permiten en el momento actual del proyecto.

5.1. Pruebas en apartado PLATAFORMA

Siguiendo con el flujo de trabajo planteado para este apartado para el módulo correspondiente dentro del MPP, se están realizando estudios del estado del arte y análisis de viabilidad de diferentes tipos de plataformas de vuelo.

En configuración MULTIRROTOR, se están analizando las siguientes combinaciones:

4B/4M: 4 brazos con 4 motores, también conocido como "quadcopter"

6B/6M: 6 brazos y 6 motores, también conocido como "hexacopter"

8B/8M: 8 brazos y 8 motores, también conocido como "octocopter"

4B/8M: 4 brazos y 8 motores en disposición coaxial, también conocido como "octocopter contrarrotante"

En configuración VTOL, se están analizando diferentes soluciones, haciendo énfasis en la carga de pago que pueden soportar. Con los trabajos realizados hasta el momento, se está orientado la selección hacia plataformas VTOL que disponen de motorización independiente en sentido vertical y en horizontal, ya que resultan ser las que ofrecen mayor capacidad de MTOW.

Los análisis de viabilidad funcional y económica incluidos en el flujo de trabajo del MPP suponen un primer filtro que reducirá el número de opciones. En este momento del proyecto se siguen realizando estos trabajos, con resultados muy preliminares cuya publicación no aporta nada significativo al proyecto, por lo que se realizará más adelante.

5.2. Pruebas en apartado PROPULSIÓN

Se pueden destacar las pruebas realizadas para el sistema de PROPULSIÓN del PROTOTIPO INICIAL, primer paso en el proceso de DISEÑO como se indicaba en el documento **6G SORUS DRONES A3-2 E1 Diseño del UAV v1.PDF**

Las pruebas realizadas han permitido la selección de una configuración de Motor + Hélice que aporta las prestaciones adecuadas a este PROTOTIPO INICIAL y que sirven de referencia para las pruebas que se irán realizando

Las pruebas para seleccionar el conjunto propulsor se basan en un sistema iterativo que comienza por una primera fase de identificación de los equipos más adecuados, basada en la experiencia y conocimiento de AEROTOOLS. Estos equipos que componen el grupo propulsor son básicamente el motor, el variador y la hélice.

La primera selección de motores se realiza sobre 3 unidades diferentes del fabricante T-Motor, de probada calidad y durabilidad; también se valoran diversas unidades de variadores; y por última se establecen una serie de hélices de diferentes dimensiones y fabricantes como potenciales complementos al sistema propulsor.

Con todo ello se realizan las pruebas de comportamiento en diferentes configuraciones, entrando en el proceso iterativo comentado, y que se puede tomar como ejemplo de la metodología que se seguirá a lo largo del proyecto:

- Pruebas de comportamiento del conjunto con baterías 4S o 6s.
- Pruebas para cálculo de prestaciones (empuje, potencia, consumo, eficiencia...)
 en las condiciones requeridas para el MTOW de la aeronave.
- Pruebas de selección final del conjunto motor + hélice.
- Series de caracterización del conjunto en las condiciones de trabajo.

Las hélices probadas se indican en la siguiente matriz de configuraciones del conjunto propulsor:

	T Motor MN 4006-23 380KV	T Motor MN 4010 580KV	T Motor MN 4014 400KV
Batería 4S	16,4 x 5,9 plegable (T motor) 16 x 5,4 (T motor) 17 x 5,5 (Foxtech) 17 x 5,8 (T motor) 18 x 5,5 (Foxtech)	13 x 4,4 (T motor) 15 x 5 (T motor) 15 x 5,5 (Rctimer) 15 x 5,5 (Foxtech) 16 x 5,5 (Rctimer) 16 x 5,5 (Foxtech)	15 x 5 (T motor) 16 x 5,5 (Rctimer) 17 x 5,5 (Foxtech) 17 x 5,8 (T motor) 18 x 5,5 (Foxtech)
Batería 6S	15 x 5 (T motor) 15 x 5,5 (Rctimer) 15 x 5,5 (Foxtech) 16 x 5,4 (T motor) 16 x 5,5 (Rctimer) 16 x 5,5 (Foxtech) 16,4 x 5,9 plegable (T motor) 17 x 5,8 (Rctimer)	13 x 4,4 (T motor) 14 x 4,8 (T motor)	15 x 5 (T motor) 15 x 5,5 (Rctimer) 15 x 5,5 (Foxtech) 16 x 5,4 (T motor) 16 x 5,5 (Rctimer) 16 x 5,5 (Foxtech) 16,4 x 5,9 plegable (T motor) 17 x 5,5 (Foxtech) 17 x 5,8 (T motor)

Figura 9. Pruebas del grupo propulsor

En una primera serie de pruebas en las que se mide el empuje proporcionado por la hélice, se realiza un primer filtrado de las mismas, eliminando aquellas que no proporcionan las prestaciones adecuadas. El siguiente cuadro muestra las configuraciones aceptables por tipo de hélice, en el modo SI (destacado en verde) / NO, para facilitar el seguimiento del proceso:

			06 30		10 70		14 00
		48	68	48	68	48	6S
T-Motor	13x4.4	NO	NO	SÍ	SÍ	NO	NO
T-Motor	14x4.8	NO	NO	NO	SÍ	NO	NO
T-Motor	15x5.5	NO	SÍ	SÍ	NO	SÍ	SÍ
T-Motor	16x5.4	SÍ	SÍ	NO	NO	NO	SÍ
T-Motor	16.4x5.9	SÍ	SÍ	NO	NO	NO	SÍ
T-Motor	17x5.8	SÍ	NO	NO	NO	SÍ	SÍ
Foxtech	15x5.5	NO	SÍ	SÍ	NO	NO	SÍ
Foxtech	16x5.5	SÍ	SÍ	SÍ	NO	NO	SÍ
Foxtech	17x5.5	SÍ	NO	NO	NO	SÍ	SÍ
Foxtech	18x5.5	SÍ	NO	NO	NO	SÍ	NO
RCTimmer	15x5.5	NO	Sĺ	SÍ	NO	NO	Sĺ
RCTimmer	16x5.5	NO	Sĺ	Sĺ	NO	SÍ	Sĺ

Figura 10. Cuadro resumen del grupo propulsor

A continuación, se realizan las pruebas en el Banco de Motores de AEROTOOLS para las diferentes configuraciones admisibles. Los resultados se muestran en tablas, de las que se incluyen ejemplos parciales como referencia para cada motor en prueba. También se incluyen en este documento evidencias gráficas de los diferentes elementos en pruebas.

Las tablas completas se pueden consultar en el documento adjunto:

6G_SORUS_DRONES_A1-2_E1_Perfilado_Resultados_ITER1_PROPULSION. XLSX

	T Motor 4006-23 kv380												
	Batería 4S												
	Hélice 16,4x5,9 plegable (T motor)												
	Hélice bajo tubo empuje libre												
Temper	atura alcanz	ada: 35°C											
Time (s)	ESC signal (μs)	AccX (g)	AccY (g)	AccZ (g)	Torque (N·m)	Thrust (kgf)	Voltage (V)	Current (A)	Electrical Power (W)	Vibration (g)	Eficiencia (g/W)		
67,124031	1800	-0,04290365	0,03984375	-1,00260417	0,00580906	0,9435552	15,7762961	5,51858754	87,06287	0,565104	10,83763		
71,3996637	1850	-0,03984375	0,03704427	-0,99967448	0,00676203	1,04446576	15,7561152	6,33924513	99,88188	0,194596	10,45701		
	1876,59119					1,1					10,24692		
75,8524312	1900	-0,04023438	0,03736979	-1,00208333	0,00645472	1,14888799	15,7336355	7,25714283	114,1812	0,251302	10,06197		
	1925,20498					1,2					9,898964		
80,3360305	1950	-0,03802083	0,03854167	-1,00384115	0,0054666	1,25028068	15,7096811	8,17227703	128,3839	0,405859	9,738612		
	1987,17658					1,3					9,627423		
84,6970975	2000	-0,03697917	0,0375	-0,99973958	0,00604765	1,31714982	15,693013	8,7529078	137,3595	0,470247	9,58907		

Figura 11 Resultados del ensayo del conjunto: T Motor 4006-23 kv380 - Hélice 16.4x5.9 - Batería 4S

Figura 12. Pruebas con motor T Motor 4006-23 kv380

	T Motor 4010 kv580												
	Batería 6S												
	Hélice 14x4,8 (T motor)												
	Hélice bajo tubo empuje libre												
Temper	atura alcanz	ada: 45°C			•	. ,							
Time (s)	(μs) (N·m) (w) (g) (g/w)												
31,5079023	1400	-0,04427083	0,03365885	-1,00169271	0,00524726	1,00231361	23,2676825	5,08069779	118,2161	1,047461	8,478659		
	1426,17397					1,1					8,247265		
35,8415022	1450	-0,04121094	0,03821615	-1,00253906	0,00227186	1,18892344	23,1789463	6,38243414	147,9381	0,411393	8,036628		
	1452,8999					1,2					8,00937		
	1479,08043					1,3					7,763286		
40,1467363	1500	-0,04466146	0,0389974	-1,00104167	0,0070501	1,3799051	23,0740559	7,90353956	182,3667	0,373893	7,566652		
44,6225358	1550	-0,04238281	0,03834635	-1,00201823	0,00562475	1,58568526	22,9515165	9,65524079	221,6024	0,427279	7,15554		
48,9747353	1600	-0,03971354	0,04023438	-1,00214844	-0,00220722	1,77376061	22,8264021	11,3931226	260,0638	0,668359	6,820483		
53,6874358	1650	-0,04361979	0,04277344	-1,00104167	-0,01728289	1,97276629	22,6898792	13,2116541	299,7708	0,846224	6,580916		
58,0949683	1700	-0,0514974	0,0453776	-0,99921875	-0,02206596	2,19157989	22,5319974	15,5199309	349,6951	1,354818	6,267116		
62,5898685	1750	0,11360677	0,04889323	-0,99407552	-0,02930104	2,40886046	22,3730054	17,8634749	399,6597	2,844336	6,027279		
67,0453683	1800	-0,05748698	0,05065104	-0,99934896	-0,03080719	2,60079555	22,1988902	20,324164	451,1739	1,685352	5,764508		
71,6436687	1850	-0,04277344	0,04544271	-1,00338542	-0,03518361	2,81327739	22,01754	22,8888306	503,9559	0,984115	5,582388		
76,256402	1900	-0,04257813	0,0343099	-1,00891927	-0,04155517	3,04389488	21,8065119	25,9274963	565,3884	0,789388	5,383723		
80,7156025	1950	-0,04277344	0,04270833	-0,99973958	-0,04979458	3,28156093	21,5911409	29,1194886	628,723	0,667513	5,219406		
85,0621022	2000	-0,04661458	0,04505208	-1,00045573	-0,04888755	3,37987448	21,4331309	31,0553105	665,6125	0,451042	5,077841		

Figura 13 Resultados del ensayo del conjunto: T Motor 4010 kv580 - Hélice 14x4.8 - Batería 6S

Figura 14. Pruebas con motor T Motor 4010 kv580

T Motor 4014 kv400 Batería 6S Hélice 17x5,8 (Tmotor) Hélice bajo tubo empuje libre **Electrical Torque** Vibration | Eficiencia **ESC** signal AccX (g) AccZ (g) Thrust (kgf) Current (A) Time (s) AccY (g) Voltage (V) Power (N·m) (g/W) (µs) (g) (W) 17,3154975 1250 -0,04016927 0,04075521 -1,00253906 0,00414151 | 0,45871688 | 22,9670715 1,60577183 | 36,87988 0,121484 12,43813 -1,00481771 0,6145989 22,9296 2,27594513 52,1865 0,126823 11,77697 1300 21,6232985 -0,03802083 | 0,03847656 0,00518974 -0,03802083 0,03847656 -1,00501302 0,00625034 0,76896261 22,8827823 3,03634512 69,48002 0,08151 11,06739 25.945031 1350 4,16129115 94,95849 30,140932 1400 -0,03919271 0,04010417 -1,00201823 0,00844848 0,99092804 22,8194805 0,10293 10,43538 1423,12897 1,1 10,17673 1444,3342 1,2 9,903737 5,33423638 22,7419365 | 5,48413581 | 124,7199 | 0,334245 | 9,835794 -0,04088542 -1,00253906 1,22671887 34,2730985 1450 0,03945313 0,00956389 1465,11031 135,0655 1,3 9,718206 0,00997785 1,46920599 -0,04205729 0,04160156 -1,00520833 7,01926922 | 158,9536 | 0,236393 | 9,242987 38,5797653 22,645326 1500 42,8563328 -0,03990885 0,04355469 -1,00136719 0,01323528 | 1,70413638 | 22,5426606 8,62312797 | 194,3882 | 0,439583 | 8,766664 1550 -0,03834635 0,03789063 -1,00117188 0,01258264 1,95508252 22,4283918 10,4609356 234,622 0,336393 8,332905 47.0853648 1600 51,4133318 -0,04720052 0,04355469 -1,00123698 0,0114846 2,19116115 | 22,3028507 12,4019946 | 276,5998 | 0,480013 | 7,921773 1650 55,6852652 1700 -0,04244792 0,04140625 -1,00195313 0,00739235 | 2,39606493 | 22,1742374 14,2690617 316,4056 0,305469 7,572763 -0,04492188 0,04928385 -1,00410156 2,1878E-05 | 2,63227691 | 22,0324117 16,4685345 362,8415 0,246549 7,254619 59.8769983 1750 64.3909317 1800 -0,04361979 0,04752604 -1,00032552 -0,02227945 | 2,84611624 | 21,8827548 | 18,5830428 | 406,6483 | 0,247266 | 6,998963 68,7008655 -0,0359375 0,04199219 20,7904898 | 451,7913 | 0,426823 | 6,698695 -1,00507813 -0,02523856 3,02641223 21,7306716 1850 72.5989973 1900 -0.04466146 0.07122396 -1.00058594 -0.02855493 | 3.22548368 | 21.5589365 | 23.4430304 | 505.4065 | 0.465365 | 6.381959

Figura 15 Resultados del ensayo del conjunto: T Motor 4014 kv400 - Hélice 17x5.8 - Batería 6S

Figura 16. Pruebas con motor T Motor 4014 kv400

Una vez realizadas esta serie de pruebas, se recoge en la siguiente tabla un resumen de los resultados obtenidos, incluyendo una categorización por colores de la idoneidad de la configuración concreta.

Se observan los valores de PWM (control de velocidad de motores brushless mediante modulación) y eficiencia de los motores, en función del empuje suministrado al motor y del conjunto hélice-batería.

Código de colores:

- ROJO: descartable

- AMARILLO: usable con precaución

VERDE: óptimo para UAV.

En este caso, interesa buscar la eficiencia del conjunto hélice-motor entre el 50-60% del empuje total del motor, para poder realizar vuelos estacionarios. Esto se traduce en un PWM de aproximadamente 1500 µs. En la Tabla se observan los resultados en cuanto PWM y eficiencia de los tres motores elegidos, con empujes de 1.1, 1.2 y 1.3 kg, en función de las hélices y las baterías 4S y 6S.

Los resultados se expresan con un código de colores, de manera que cuanto más verde sea, mejor es el resultado, y por el contrario al acercarnos al rojo peor resultado se está obteniendo.

Se observa que los motores modelo 4006 380 KV y modelo 4014 400 KV con la hélice T-Motor 17 x 5.8 son los que más se amoldan al punto óptimo de utilización del UAV en estudio.

Otras conclusiones interesantes para las pruebas futuras indican que en el motor 4006 380 KV con la hélice T-motor 17 x 5.8 es el conjunto más eficiente de todos los que se han probado, pero tras periodos de funcionamiento similares a los que se producirían en vuelos de inspección, se producen calentamientos del motor, (expresados en color rojo en la tabla) lo que hace recomendable descartar este conjunto.

									3	MC	TOR						,		
				4006	380 KV					4010	570 KV					4014	400 KV		
HÉLICE	BATERÍA	Emp	ouje 1,1	Emp	uje 1,2	Emp	ouje 1,3	Emp	ouje 1,1	Emp	uje 1,2	Emp	uje 1,3	Emp	uje 1,1	Emp	ouje 1,2	Emp	uje 1,3
			Eficiencia		Eficiencia		Eficiencia		Eficiencia		Eficiencia		Eficiencia		Eficiencia		Eficiencia		Eficiencia
10:4 1 Tm eten	48	(µs)	(g/w)	(μs)	(g/w)	(µs)	(g/w)	(μs)	(g/w)	(μs)	(g/w)	(μs)	(g/w)	(μs)	(g/w)	(µs)	(g/w)	(µs)	(g/w)
13x4.4 Tmotor								1727	8,112	1763	7,973	1800	7,824	4740	40.00	4700	40.407	4000	0.000
15x5 Tmotor	4S							1540	9,466	1572	9,194	1603	8,925	1748	10,38	1789	10,127	1829	9,869
15x5.5 FOX	4S	4000	40.500	4007	40.07	4005	0.00	1523	8,085	1552	7,758	1583	7,465						
16x5.4 Tmotor	4S 4S	1838	10,529	1887	10,07	1935	9,68	4507	0.445	4500	0.400	4500	7 700	4005	0.500	4050	0.404	4000	0.000
16x5.5 RCTimer 16x5.5 FOX	4S 4S	1540	8,663	1574	8,243	1608	7.838	1507 1495	8,415 8,133	1536 1521	8,106 7,832	1566 1547	7,782 7,548	1625	9,538	1658	9,194	1693	8,882
16.4x5.9 Pleq	43	1540	0,003	1374	0,243	1000	7,030	1495	0,133	1321	1,032	1547	7,340						
Tmotor	4S	1877	10,247	1925	9,9	1987	9,627												
17x5.5 FOX	4S	1746	9,223	1790	8,77	1839	8,365							1612	9,647	1643	9,325	1672	9,061
17x5.8 Tmotor	4S	1773	10,914	1821	10,432	1866	10,054							1649	10,921	1684	10,608	1717	10,317
18x5.5 FOX	4S	1698	9,2	1746	8,665	1787	8,252							1527	9,75	1553	9,45	1580	9,17
13x4.4 Tmotor	6S							1487	7,73	1515	7,535	1541	7,359						
14x4.8 Tmotor	6S							1426	8,24	1453	8,01	1479	7,763						
15x5 Tmotor	6S	1616	9,94	1654	9,514	1692	9,158							1492	9,739	1515	9,467	1542	9,21
15x5.5 FOX	6S	1580	8,512	1614	8,123	1646	7,767							1462	8,544	1486	8,259	1510	7,984
15x5.5 RCTimer	6S	1570	8,52	1605	8,521	1638	7,948	1533	8,279	1564	7,944	1594	7,63	1439	8,777	1461	8,5188	1484	8,242
16x5.4 Tmotor	6S	1559	10,19	1593	9,741	1624	9,406							1450	10,05	1473	9,705	1497	9,452
16x5.5 RCTimer	6S	1537	8,7	1572	8,247	1608	7,791							1405	9,019	1427	8,741	1448	8,429
16x5.5 FOX	6S	1540	8,663	1574	8,243	1608	7,838							1430	8,792	1452	8,519	1432	8,756
16.4x5.9 Pleg Tmotor	6S	1596	9,716	1628	9,42	1659	9,138							1481	9,492	1497	9,284	1522	9,058
17x5.8 Tmotor	6S	1511	10,96	1539	10,58	1569	10,22							1423	10,176	1444	9,904	1465	9,72
17x5.5 FOX	6S													1384	9,019	1402	8,765	1422	8,54

Figura 17. Comparativa de eficiencia de los motores

Otro parámetro interesante a tener en cuenta es la temperatura alcanzada por los motores durante la prueba, que se puede ver en la siguiente tabla:

		MC	ОТО	R 40	06								
HÉLICE	Stick de						Min	utos	5				
	aceleración	0	1	2	3	4	5	6	7	8	9	10	11
	aceleracion				T	em	pera	tura)°(:)			
16 x 5,5	1400 pwm	28	46	48	52	52	52	52	53	54	54	53	
	1500pwm	36	54	62	64	67	68	68	68	69	69	69	
	1600pwm		75	82	89	91							
	1400 pwm		36	39	40	42	43	43	43				
16,4 x 5,9	1500pwm	34	42	45	49	50	51	50	51	51			
	1600pwm	30	49	55	56	57	59	60	60	59	62	61	61
	1400 pwm	29	38	41	43	42	42	46	45	45	45	43	
	1500pwm	39	46	49	60	62	61	62	62	63	62	62	
17 x 5,8	1600pwm	40	60	70	76	79	80	82	85	88	88	89	
	1600pwm	26	41	45	50	53	56	53	52				
	1600pwm	36	47	54	54	55	58	57	57	55			

		MC	ОТО	R 40)14								
HÉLICE	Stick de				Т	iem	po (min	uto	s)			
	aceleración	0	1	2	3	4	5	6	7	8	9	10	11
16 5 5	aceleracion				T	em	oera	tura	(°C	:)			
16 x 5,5 RCtimer	1400 pwm	39	39	41	43	44	43	44	43	43	44	45	
Ketillei	1500pwm	36	43	46	50	51	53	52	54	54	54	56	55
	1600pwm	39	43	46	50	60	63	67	68	69	69	70	70
16,4 x 5,9	1400 pwm	30	37	39	41	42	42	42	43	44	44	43	
plegable	1500pwm	29	41	42	43	45	44	45	44	45	45	45	
Tmotor	1600pwm	28	38	43	46	49	50	49	50	50	50	50	
17 v E 0	1400 pwm	40	42	45	46	46	47	47	48	47	48		
17 x 5,8 Tmotor	1500pwm	38	44	46	48	50	51	52	51	51	51		
Tillotoi	1600pwm	37	46	52	55	57	56	58	57	58	58	58	

Figura 18. Comparativa de temperatura de T Motor MN 4014

Una vez realizado el estudio, se puede optar por una configuración de MOTOR + HÉLICE con la seguridad de estar eligiendo la configuración óptima.

Si, por ejemplo, se decide utilizar el motor 4014 400 KV con las hélices 17 x 5,8, se puede obtener una gráfica del motor elegido y los resultados de eficiencia en función de las hélices probadas:

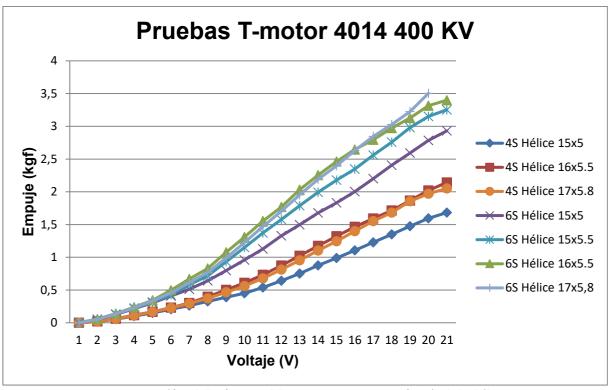


Figura 19. Gráfico de la eficiencia del T-motor 4014 400 KV en función de las hélices

5.3. Pruebas en apartado ALIMENTACIÓN

Para una correcta evaluación de los sistemas de alimentación de energía más adecuado para los PROTOTIPOS del proyecto, se está realizando un análisis del comportamiento de Baterías con diferentes tecnologías, como es el caso de las baterías de Polímero de Litio (Li-Po) y las de Litio-lon (Li-lon). Se trata de las más usadas en la actualidad y las que ofrecen un funcionamiento más consistente, por lo que son una base y una referencia adecuada para los objetivos del proyecto.

A continuación, se muestran ejemplos de la base de datos que se está generando en cada una de las tecnologías descritas. Estos datos son accesibles en el documento adjunto:

6G_SORUS_DRONES_A1-2_E1_Perfilado_Resultados_ITER1_ALIMENTACION. XLSX

Pesos de baterías															
	Li-PO		Zippy	Turnigy			Tatto	Tatto		Tatto					
No de baterías	1	1	1	1	1	1	1	1	1	1	1	1	1	2	No de baterías
Capacidad por celda															Capacidad por celda
Celdas en serie	3	3	4	4	4	4	6	6	6	6	6	6	6	6	Celdas en serie
Grupos en Paralelo															Grupos en Paralelo
Celdas totales															
Capacidad teórica 1 bat mAh	2200	5200	5000	5000	6600	8000	9000	10000	12000	12000	16000	16000	20000	21000	Capacidad teórica 1 bat mAh
Capacidad teórica total mAh	2200	5200	5000	5000	6600	8000	9000	10000	12000	12000	16000	16000	20000	42000	Capacidad teórica total mAh
Voltaje Nominal 3.7	11,1	11,1	14,8	14,8	14,8	14,8	22,2	22,2	22,2	22,2	22,2	22,2	22,2	22,2	Voltaje Nominal 3.7
Voltaje Max 4.2	12,6	12,6	16,8	16,8	16,8	16,8	25,2	25,2	25,2	25,2	25,2	25,2	25,2	25,2	Voltaje Max 4.2
Capacidad de descarga	15	15	20	15	20	20	10	10	35	10	25	10	20	20	Capacidad de descarga
Wh Teóricos	24,42	57,72	74,00	74,00	97,68	118,40	199,80	222,00	266,40	266,40	355,20	355,20	444,00	932,40	Wh Teóricos
Peso total de batería	188,00	450,00	440,00	540,00	570,00	960,00	1200,00	1240,00	1400,00	1540,00	1850,00	1920,00	2440,00	5000,00	Peso total de batería
Peso por celda (g)	62,67	150,00	110,00	135,00	142,50	240,00	200,00	206,67	233,33	256,67	308,33	320,00	406,67	833,33	Peso por celda (g)
Peso por Ah (g/celda*Ah)	28,48	28,85	22,00	27,00	21,59	30,00	22,22	20,67	19,44	21,39	19,27	20,00	20,33	19,84	Peso por Ah (g/celda*Ah)
Wh por Peso (Wh/g)	0,130	0,128	0,168	0,137	0,171	0,123	0,167	0,179	0,190	0,173	0,192	0,185	0,182	0,186	Wh por Peso (Wh/g)
Wh por Peso (Wh/Kg)	129,89	128,27	168,18	137,04	171,37	123,33	166,50	179,03	190,29	172,99	192,00	185,00	181,97	186,48	Wh por Peso (Wh/Kg)
Capacidad Real mAh 88%	1936	4576	4400	4400	5808	7040	7920	8800	10560	10560	14080	14080	17600	36960	Capacidad Real mAh 88%
Wh Real	21,49	50,79	65,12	65,12	85,96	104,19	175,82	195,36	234,43	234,43	312,58	312,58	390,72	820,51	Wh Real
Wh Reales por Peso (Wh/Kg)	114,31	112,87	148,00	120,59	150,80	108,53	146,52	157,55	167,45	152,23	168,96	162,80	160,13	164,10	Wh Reales por Peso (Wh/Kg)
Máximo poder de descarga A	33	78	100	75	132	160	90	100	420	120	400	160	400	840	
W20 minutos 3C	64.47	152.38		195.36	257.88	312.58	527.47	586.08	703.30	703.30	937.73	937.73	1172.16	2461.54	
W15minutos 4C	85,96	203,17	260.48	260.48	343,83	416,77	703,30	,	937.73	937.73	1250.30	1250.30	1562.88	3282.05	
W10 minutos 6C	386,81	914.28	1172.16	1172,16	1547.25	1875.46	3164.83	3516,48	4219.78	4219.78	5626.37	5626.37	7032.96	14769.22	

Figura 20 Tabla de resultados de ensayos de baterías Li-Po

		Baterías	s de Liti	0															
LiION		Serie	Paralelo	Nº celdas	Volt.	Volt. Max Celda	Volt. Total V	Desc. max	Cap. DATO celda mAh	Cap. Real celda mAh	Cap. Total	Cap TOTAL	Desc. Max	Desc. Celda Continua C	Desc. Total Continu a A	Peso Celda	Peso conectores	PESO TOTAL	Densidad Energética Wh/Kg
Sony	18650	6	6	36	3,65	4,15	21,9	30	3000	3000	18.000,00	394,20	180	10	180	48	80	1.808.00	218,03
Samsun		6	6	36	3,65	4,15	21,9	15	3000	3000	18.000,00	394,20	90	5	90	50	80	1.880,00	209,68
Samsun	-	6	6	36	3,65	4,15	21,9	35	4000	4000	24.000,00	525,60	210	8,75	210	67	60	2.472,00	212,62
Sanyo	21700			0	3,65	4,15	Ó	15	4250	4250	0,00	0,00	0	3,529412	0	48	40	40,00	0,00
				0	3,65	4,15	0	20	3000	3000	0,00	0,00	0	6,666667	0	48	40	40,00	0,00
				0	3,65	4,15	0	20	3000	3000	0,00	0,00	0	6,666667	0	48	20	20,00	0,00
				0	3,65	4,15	0	20	3000	3000	0,00	0,00	0	6,666667	0	48	20	20,00	0,00
				0	3,65	4,15	0	20	3000	3000	0,00	0,00	0	6,666667	0	48	10	10,00	0,00
LiFE A123				Nº	Volt.	Volt. Max	Volt.	Desc. max		Cap. Real celda	Cap. Total	Cap TOTAL		Desc. Celda Continua	Desc. Total Continu		Peso	PESO	Densidad Energética
		Serie	Paralelo		celda	Celda	Total V		mAh	mAh	mAh	Wh	TOTAL A	С	a A			TOTAL	Wh/Kg
Lithium	26650	6	6	36	3,2	3,3	19,2	30	2500	2500	15.000,00	288,00	180	12	180	76	50	2.786,00	103,37
				0	3,65	4,15	0	15	3000	3000	0,00	0,00	0	5	0	50	80	80,00	0,00
		-		0	3,65	4,15	0	35	4000	4000	0,00	0,00	0	8,75	0	67	60	60,00	0,00
				0	3,65	4,15	0	15	4250	4250	0,00	0,00	0	3,529412	0	48	40	40,00	0,00
				0	3,65	4,15 Volt.	0		3000 Cap. DATO	Cap.	0,00	0,00	0	6,666667 Desc. Celda Continua	Desc.	48	40	40,00	0,00 Densidad
				Nº	Volt.	Max	Volt.	Desc. max	celda	celda	Cap. Total	Cap TOTAL	Desc. Max	С	Continu		Peso	PESO	Energética
		Serie	Paralelo	celdas	celda	Celda	Total V	Celda A	mAh	mAh	mAh	Wh	TOTAL A	=1/2CMax	a A	Peso Celda	conectores	TOTAL	Wh/Kg
LiPO		6	1	6	3,7	4,2	22,2	20	9000	8550	8.550,00	189,81	20	10	85,5	185	50	1.160,00	163,63
		6	1	6	3,7	4,2	22,2	15	10000	9500	9.500,00	210,90	15	7,5	71,25	200	50	1.250,00	168,72
		6	1	6	3,7	4,2	22,2	20	12000	11400	11.400,00	253,08	20	10	114	250	50	1.550,00	163,28
		6	2	12	3,7	4,2	22,2	20	9000	8550	17.100,00	379,62	40	10	171	185	50	2.270,00	167,23
		4	1	4	3,7	4,2	14,8	20	5000	4750			20	10	47,5	185	50	790,00	0,00
				0	3,7	4,2	0	20		0			0	10	0	185	50	50,00	0,00
				0	3,7	4,2	0	20		0			0	10	0	185	50	50,00	0,00
				0	3,7	4,2	0	20		0			0	10	0	185	50	50,00	0,00
				0	3,7	4,2	0	20		0			0	10	0	185	50	50,00	0,00
				0	3,7	4,2	0	20		0			0	10	0	185	50	50,00	0,00

Figura 21 Tabla de resultados de ensayos de baterías de Li-Ion

5.4. Pruebas en apartado ELECTRÓNICA

Las comunicaciones son un aspecto fundamental del proyecto SORUS, tanto como base para superar las limitaciones de la tecnología actual y consolidar la operación del UAV en modo BVLOS, como para la transferencia de información (datos, imágenes...) para el uso avanzado de funcionalidades que mejoren la operación (detección automática de incidentes mediante herramientas IA, por ejemplo).

Su orquestación con la electrónica de vuelo es una parte fundamental del proceso de integración y se trata de un área compleja en el que interviene múltiples dispositivos (la propia electrónica de vuelo, multiplexores que introduzcan jerarquía en las órdenes, módems, antenas, clusters, computación avanzada y deslocalizada...), así como actores (el propio dron, los servidores en cloud, las operadoras de telefonía...). Por estos motivos, y con el objetivo de avanzar en la integración de las tecnologías de referencia en el proyecto, como son B5G y 6G, se están realizando pruebas con tecnologías de comunicación desplegadas y accesibles en estos momentos, como el 4G o el 5G (de forma limitada).

Redes 4G

La integración de comunicación mediante tecnología 4G-LTE aporta grandes posibilidades, al extender el rango de operación del dron y al permitir plantearse superar las limitaciones de la tecnología de radio en cuanto a la necesidad de que el emisor y el receptor se deban encontrar en línea de vista sin obstáculos.

El sistema se basa en un conjunto de dispositivos que permiten tener comunicación con la aeronave. Para poder hacer uso de esta tecnología, es necesario usar otro microprocesador en la aeronave (Figura 22), en este caso se ha elegido una Raspberry Pi, modelo 4, que tiene una capacidad de computación suficiente para realizar la comunicación entre el módem 4G LTE y la placa de vuelo Pixhawk 2.

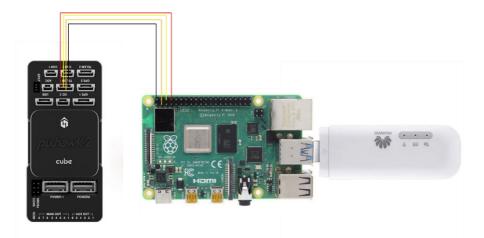


Figura 22. Esquema de conexionado entre Pixhawk y Raspberry Pi con dispositivo 4G LTE USB.

El sistema completo se basa en el uso de un ordenador en tierra, el mismo que se usa como estación de tierra, con el programa Mission Planner instalado. Y para poder tener comunicación directa con el equipo de aire necesitamos una conexión a un punto de acceso a Internet. Este punto de acceso puede

realizarse de varios modos:

• Conectando el ordenador directamente una red Wifi de un router con acceso a Internet.

- Conectando el ordenador a una red Wifi generada con un teléfono con tecnología 4G, que tenga cobertura en ese momento (la zona ha de tener cobertura).
- Conectando un modem 4G LTE al ordenador. Este modem se conectará a la red. (la zona ha de tener cobertura).

Para las pruebas, se llevan cabo labores de identificación de componentes, configuración de software UAV Matrix como habilitador de las comunicaciones o la integración en el sistema complejo del dron conectando electrónica de vuelo con elemento de computación Raspberri Pi y el dispositivo generador de señal de comunicación (modem).

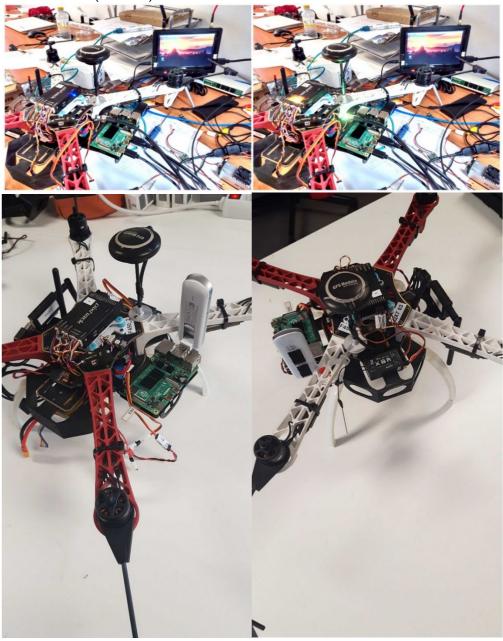


Figura 23 Prueba de Hardware del conjunto Pixhawk, la Raspberry Pi y el dispositivo 4G LTE USB.

Una vez conectados los diferentes dispositivos se alcanza una de las fases más áridas del proceso, como es el establecimiento de una comunicación adecuada a la aplicación que se quiera hacer de este canal de comunicación. Por ejemplo, para el envío de imágenes o datos desde la carga de pago a la estación de control en tierra. O, en el futuro, el envío de datos procesados a bordo.

Esto se consigue estableciendo una red virtual privada (VPN), que posibilite la transmisión de datos de forma estable y cerrada a interferencias externas. Las pruebas de desarrollo e integración posibilitaron este escenario mediante la conexión por una red virtual privada a través de Internet de ZeroTier, alcanzándose una funcionalidad adecuada para su aplicación, sentándose las bases para su integración después de un desarrollo mínimo.

La comunicación a través de VPN se aplicará también en redes de comunicación más avanzada, 5G, por lo que se detalla a continuación el proceso de integración.

Instalación

Se busca una **imagen** de la última **Raspbian buster** con desktop para instalar en la SD de la RP

Se usa el programa **Balena etcher** para generar la imagen que una vez que se instale en la RP al iniciar por primera vez, se actualiza y se instala el UAV Cast


Una vez instalado proporciona una IP que es a la IP que realizaremos la conexión.

Se accede a esa IP desde otro ordenador o desde la misma Raspberry y realmente es el programa de configuración de UAV CAST. Se introduce el **nº de serie**. UAV3C42-4382-64FE-D6B6CAST

Primera comunicación

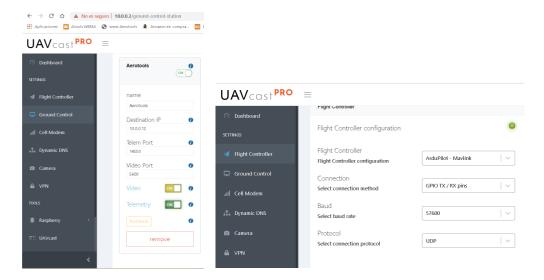
Conexionado físico

Se ha de conectar la Pixhawk con la RP con un cable como el de la imagen

El positivo no es necesario ya que se alimentará a la RP con un BEC específico.

Entrando en la configuración de Ground control y la Destination IP que se ha de poner es la del ordenador en uso en la misma red que esté conectada la RP.

Esto es para una prueba de funcionamiento.


Posteriormente se conectará a una red Zerotier para poder conectar en cualquier ubicación, independientemente de la IP que tenga la RP o el ordenador.

En este caso, el ordenador en uso tiene el 10.0.0.12 en la misma red wifi que la RP Para conectar desde el Mission Planner se deben elegir los datos que están puestos en la imagen de la derecha.

Y para establecer conexión

Y automáticamente se conectará

Conexionado de la cámara

Se usará inicialmente la Picamera

Conectándo por una red virtual privada a través de Internet de ZeroTier

Se instala zerotier. Para la instalación seguimos los siguientes comandos:

Orden para saber que programas están instalados en la RP (por si acaso estuviera instalado)

dpkg -get-selections

Orden para instalar Zerotier

sudo curl -s https://install.zerotier.com/ | sudo bash

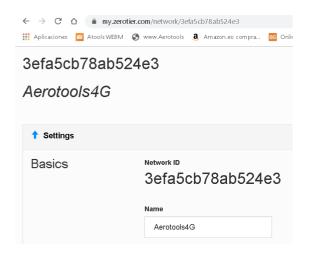
Cuando termina de instalarse nos da la nueva ID de acceso Zerotier de nuestra Raspberry Pi 4 **9ddb39327a** Esta ID valdrá para conectar a cualquier red de Zerotier.

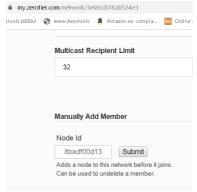
Para que siempre esté conectada a Zerotier cada vez que arranca a RP se le manda esta orden:

Se instala Zerotier en el ordenador en uso para comunicarnos con la RP

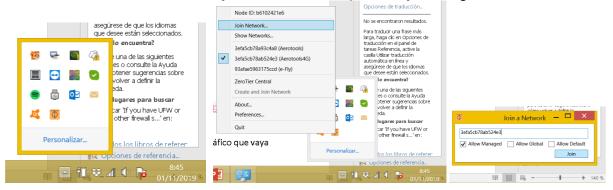
En el caso del ordenador en uso, tras la instalación la ID de acceso Zerotier proporcionada es **b6102421e6** Se genera una red desde el propio ordenador.

Desde ZerotierCentral en **my.zerotier.com** (programa web que da todos los datos de las conexiones) se genera una red, se cambia el nombre por **Aerotools4G** y proporciona la ID de red **3efa5cb78ab524e3**





Se debe dar permisos a los ordenadores que se vayan a unir a esta red. En **my.zerotier.com** Para ello se introducen los ID (node id) de todos los ordenadores.



Y desde la Raspberry se conecta a esta red con esta orden en la consola **zerotier-cli join 3efa5cb78ab524e3**

También desde el ordenador en uso. Para ello se puede entrar en la barra de iconos botón derecho sobre el icono de

Zerotíer Pinchamos en Join Network y se le añade a la red por su ID y se escoge Join

Se comprueba que la RP está correctamente conectada con la orden

sudo zerotier-cli listnetworks

Para ver

listnetworks [...] OK PRIVATE [...] [La IP(s) asignada a la RP]/24
Si se quiere que la RP se conecte a esa red siempre al arrancar se usa la orden
sudo touch /var/lib/zerotier-one/networks.d/[Network ID].conf
donde [Network ID]es la ID de la red a la que se quiere acceder
Si tiene instalado UFW o cualquier otro software de firewall, asegúrese de permitir el tráfico que vaya hacia y
desde su rango de IP privado

Instalando Cámara

Se instala Gstreamer

Se debe instalar GStreamer en la Raspberry Pi y hacer que mande el vídeo a un lugar determinado y un puerto determinado. La IP determinada será la del ordenador donde se quiera recibir y el puerto el 5600

sudo apt-get install gstreamer1.0-tools Luego se debe dar la orden de mandar vídeo por gst-launch-1.0 -v udpsrc port=5600 caps='application/x-rtp, media=(string)video, clock-rate=(int)90000, encoding-name=(string)H264' ! rtpjitterbuffer ! rtph264depay ! avdec_h264 ! videoconvert ! autovideosink sync=false

Para verlo en Mission Planner. Para ver el video en windows se puede descargar GStreammer

Referencias

1	5G HEART. 2023. <i>5G Health, Aquaculture and Transport Validation Trials.</i> 2023.
2	5G PPP. 2023. UPDATE ON 5G TRIALS AND PILOTS FOR CONNECTED. 2023.
	Adnan Shahid Khan, Muhammad Ali Sattar ,Kashif Nisar,Ag Asri Ag Ibrahim,Noralifah Binti Annuar
	Johari bin Abdullah and Shuaib Karim Memon. A Survey on 6G Enabled Light Weight Authentication
3	Protocol for UAVs, Security, Open Research Issues and Future Directions.
4	Aerotools UAV. 2022. Estado del Arte de los Elementos de Vuelo. 2022. pág. 407.
5	Bin Li, Zesong Fei, Yan Zhang. 2019. UAV Communications for 5G and Beyond:. 2019.
	Debashisha Mishra. Anna Maria Vegni, Valeria Loscri, Enrico Natalizio. 2020. Drone Networking in 6G
6	Era. 2020.
7	Keller, Matthias y Weidner, Karl-Heinz. El análisis de espectro en tiempo real.
	Mohamed Benzaghta, Giovanni Geraci, Rasoul Nikbakht, David López-Pérez. 2022. UAV
8	Communications in Integrated Terrestrial and. 2022.

