

UNICO I+D Project Grant No.

6G-EDGEDT-04-E5

Abstractions for the DT gNB

Abstract

This document presents all available data structures for the construction of the gNB-DT, and explains some examples from the literature to identify the minimum data required for each of them. It defines the main entities which interact with the gNB, and those which participate in the process of extracting the data. In addition, the document includes some deployment options for the gNB-DT, and the different ways of obtaining the information for each case.

Document properties

Document number	6G-EDGEDT-04-E5	
Document title	Abstractions for the DT gNB	
Document responsible	Antonio de la Oliva (UC3M)	
Document editor	Carlos Barroso Fernández	
Editorial team	Carlos Barroso Fernández, Antonio de la Oliva (UC3M)	
Target dissemination level	Public	
Status of the document	Final	
Version	1	

Production properties

Carlos J. Bernardos		
---------------------	--	--

Document history

Revision	Date	Issued by	Description
V1	31/12/2022	Carlos Barroso Fernández	Final version

Disclaimer

This document has been produced in the context of the 6G-EDGEDT Project. The research leading to these results has received funding from the Spanish Ministry of Economic Affairs and Digital Transformation and the European Union-NextGenerationEU through the UNICO 5G I+D programme.

All information in this document is provided "as is" and no guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability.

0				
(n	1te	en	ts.
\sim	<u> </u>			LU

1. Introduction	8
2. gNB architecture (5G/NG - RAN)	8
3. 5G Core (5GC) architecture	11
4. Data structures to recreate the gNB DT	12
4.1. Possible deployments	13
4.2. Data structures available @gNB	15
4.3. Data structures available @5GC	28
5. Minimum data required for a gNB DT	29
5.1. Required data for vrAIN	29
5.2. Required data for DeepCog	29
6. References	30

List of Figures

Figure 2-1: Main functionalities of some 5G entities [2].	9
Figure 2-2: Protocol layers of the gNB.	10
Figure 2-3: Scheme of the gNB in the splitted scenario.	11
Figure 3-1: Representation of the 5GC.	11
Figure 4-1: Generic structure of a network DT REF.	13
Figure 4-2: Deployment option 1.	14
Figure 4-3: Deployment option 2.	14
Figure 4-4: Deployment option 3.	14

List of Tables

Table 4-1: Measurements Valid for All Possible Deployments of the gNB.	15
Table 4-2: Measurements for Split gNB.	25
Table 4-3: Measurements for Non-Split gNB.	25

.

List of Acronyms

· · · · · · · · · · · · · · · · · · ·		
3GPP	3rd Generation Partnership Project	
4G	4th Generation	
5G	5th Generation	
5GC	5G Core	
AF	Application Function	
AMF	Access and Mobility Management Function	
BS	Base Station	
СР	Control Plane	
CU	Central Unit	
DN	Data Network	
DT	Digital Twin	
DU	Distributed Unit	
eNB/eNodeB	Evolved Node B	
E-UTRA	Evolved UMTS Terrestrial Radio Access	
gNB/gNodeB	Next Generation Node B	
IETF	Internet Engineering Task Force	
ML	Machine Learning	
NEF	Network Exposure Function	
NG	Next Generation	
NG-RAN	Next Generation RAN	
NR	New Radio	
NWDAF	Network Data Analytics Function	
OAM	Operations, Administration and Maintenance	
PRB	Physical Resource Block	
QoS	Quality of Service	
RAN	Radio Access Network	
RB	Radio Bearer	
RRM	Radio Resource Management	
SMF	Session Management Function	
•		

SNR	Signal to Noise Ratio	
UE	User Equipment	
UMTS	Universal Mobile Telecommunications System	
UP	User Plane	
UPF	User Plane Function	
∨RAN	Virtualization of RANs	

...

Executive Summary

.

1. Introduction

The eNodeB from E-UTRA (4G) networks are replaced in 5G by the gNodeB. It provides user and control plane protocol terminations towards the User Equipments (UEs), connecting them to the 5G Core (5GC), where all the requested services are provided. Among its functionalities, one can also highlight the management of the radio communication to/from all the UEs located in its range. In addition, the gNB supports the division or split of its functionalities, based on its protocol stack and the type of data (user or control).

As one can see, the gNB plays a key role in 5G communications, so it is a good target to research and improve the performance of the network.

By other hand, digital twining is a method that replicates the functions of a physical system or entity in a digital or virtual copy, which is called Digital Twin (DT). Its functionalities are aligned with one or more of the following objectives: monitoring, simulating, real-time improvings or predicting. To achieve them, Machine Learning (ML) models are widely used by the developers.

Due to its huge effectiveness, this method is acquiring a significant popularity in the research area. So much so that it has also begun to be deployed in many different fields, such as networking, focusing on the entire network, a part of it, or even a specific block or node.

Hence, the objective is to implement a DT of the gNB from a 5G network to take advantage of all the possibilities and benefits that the DT technology provides. One important part to develop this system is to know the available information about the gNB, the places where it is stored and how to extract it.

In this document, it is proposed some deployment options to implement the gNB-DT system, and the existing vias to extract the necessary data are discussed. Additionally, the data structures that are available in the 5G network that can be useful to generate any gNB-DT are identified and listed, including extra data which is not considered in the standards. This paper concludes with some examples from the literature applied to this case, identifying the minimum data required to carry out them.

2. gNB architecture (5G/NG - RAN)

The gNodeB (gNB) is a New Generation Radio Access Network (NG-RAN) node, inside a cellular network; it is the equivalent of the Base Station (BS) of traditional cellular networks. The node can be physical or virtual.

A gNB provides connectivity between the 5G Core (5GC) and the User Equipments (UEs) inside its coverage area, known as cell. It is connected to the 5GC by means of the NG interfaces [1]. More specifically, to the AMF (Access and Mobility Management Function) and the UPF (User Plane Function) through the NG-C and NG-U interfaces, respectively.

The functions of the mentioned blocks are summarised in the following figure (Figure 2-1) from [2]. A deep explanation of the 5GC entities is going to be carried out in the following section.

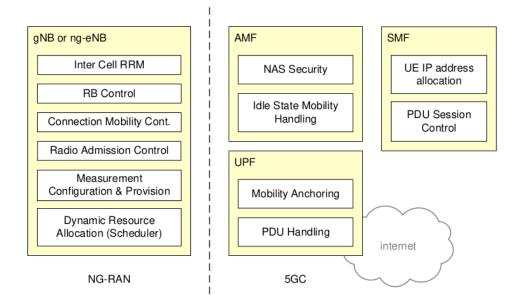


FIGURE 2-1: MAIN FUNCTIONALITIES OF SOME 5G ENTITIES [2].

One can also find the list with all functions of the gNB in [2]:

- Functions for Radio Resource Management: Radio Bearer Control, Radio Admission Control, Connection Mobility Control, Dynamic allocation of resources to UEs in both uplink and downlink (scheduling).
- IP and Ethernet header compression, uplink data decompression, encryption and integrity protection of data.
- Selection of an AMF at UE attachment when no routing to an AMF can be determined from the information provided by the UE.
- Routing of User Plane data towards UPF(s).
- Routing of Control Plane information towards AMF.
- Connection setup and release.
- Scheduling and transmission of paging messages.
- Scheduling and transmission of system broadcast information (originated from the AMF or OAM).
- Measurement and measurement reporting configuration for mobility and scheduling.
- Transport level packet marking in the uplink.
- Session Management.
- Support of Network Slicing.
- QoS Flow management and mapping to data radio bearers.
- Support of UEs in RRC_INACTIVE state.
- Distribution function for NAS messages.
- Radio access network sharing.
- Dual Connectivity.

• Tight interworking between NR and E-UTRA.

The gNB can be splitted in a Central Unit (CU) and one or more Distributed Unit (DU), connected via F1 interfaces [3], dividing the different layers of the gNB, visualised in the Figure 2–2.

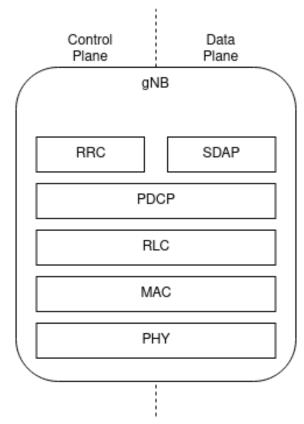


FIGURE 2-2: PROTOCOL LAYERS OF THE GNB.

By one hand, the gNB-DU hosts the RLC, MAC and PHY layers of the gNB.

The gNB-CU can also be separated into two logical parts, the Control Plane (CP) and the User Plane (UP):

- gNB-CU-CP: it hosts the RRC and the control plane part of the PDCP protocol. Is connected to the gNB-DU via F1-C interface.
- gNB-CU-UP: it hosts the user plane part of the PDCP and SDAP protocols. Is connected to the gNB-DU via F1-U interface.

Both are connected via the E1 interface [4]. The gNB-CU may consist of one gNB-CU-CP and multiple gNB-CU-UP. The structure is visualised in the Figure 2-3 from [5]:

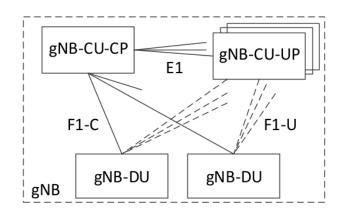


FIGURE 2-3: SCHEME OF THE GNB IN THE SPLITTED SCENARIO.

Additionally, a gNB is connected through the gNB-CU to another NG-RAN node via Xn interface [6] and to the 5GC via NG interface.

A detailed description on the splitted architecture is given by [5].

3. 5G Core (5GC) architecture

Now, it is the time to explain the architecture of the 5GC and the functionalities of the different blocks that composed it. The following figure (Figure 3-1) represents a scheme of the 5GC architecture, where DN refers to the Data Network.

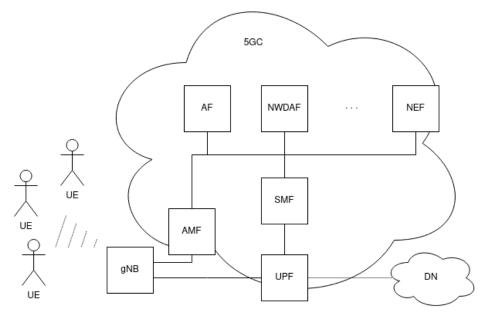


FIGURE 3-1: REPRESENTATION OF THE 5GC.

The main functionalities of each block are the following:

- **AMF**: The Access and Mobility Management function (AMF) is in charge of managing the access of the UEs to the network to provide them the required services. In particular, its functionalities are: registration, connection, reachability and mobility management; access authentication and authorization; and transparent proxy for routing Session Management (SM) messages, among others.
- **UPF**: The User Plane Function (UPF) acts as a gate to the Data Network (DN). Its functionalities are mainly related to packet routing and forwarding. It also supports some QoS features.
- **SMF**: The Session Management Function (SMF), as its name indicates, is responsible for establishing and managing the sessions of the UEs. It also realices UE IP allocation and management tasks.
- **NWDAF**: The Network Data Analytic Function (NWDAF) collects data from other blocks to optionally perform analysis and expose the information (it supports the use of Machine Learning (ML) models). The data that is retrieved and the operations over it is not specified in the standards, so it is left to each particular operator.
- **NEF**: The Network Exposure Function (NEF) is mainly a gate to ensure security within communications between trusted and untrusted functions. In other words, it exposes the events from one side to the other in a safe way.
- **AF**: An Application Function (AF) is any other block in the 5GC that is not specified in the 3GPP standards and provides some services. If an AF is considered as trustworthy by the operator, it can directly interact with the other blocks from the 5GC. However, if it is not, the AF must interact with them via the NEF.

A more extensive explanation of these entities and others (which are optional or meaningless to be mentioned in this document) is detailed in [7], including the interfaces among them.

4. Data structures to recreate the gNB DT

After reviewing the functionalities of the gNB from the NG-RAN and the 5GC, we can proceed with our objective. As it is mentioned in the introduction, we aim to develop a Digital Twin (DT) of the gNB in order to further improve its performance.

A DT is a virtual copy of some structure, service or component, mainly physical, from a system. The copy must recreate the performance of the original object or, at least, part of it. This concept can be applied in different areas (such as industry [8], smart cities [9], healthcare [10],...) to exploit its advantages and nowadays, its popularity is suffering an exponential growth [11].

The purpose of the DT is the most common form of classifying them:

- Simulating: using some input parameters and the information of the original object to understand how it behaves under certain conditions.
- Monitoring: using real-time information about the original object to see its actual behaviour.
- Real-Time actions: based on the collected information, the DT must take some decisions and report them as fast as possible.
- Predicting: using information among a period of time to anticipate the behaviour at some future time.

Another type of classification is based on the field where the DT is going to be applied. In our case, it is the networking field. For this kind of DTs, the IETF proposed a generic structure to deploy them [12], seen in Figure 4–1. However, it is not mandatory to strictly follow its approach.

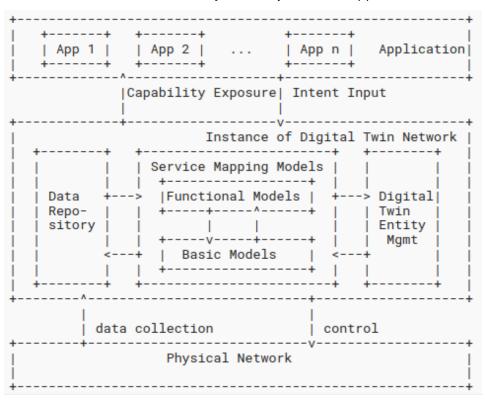


FIGURE 4-1: GENERIC STRUCTURE OF A NETWORK DT REF.

In this document we are going to list the data structures that can be used to feed the DT. The list is very extensive and it is odd to see deployments using all data. The idea is to select those which fits better with the purpose that one gives to its gNB DT.

4.1. Possible deployments

It is important to be clear about the possible deployment options that one has to create the DT, in order to understand where we obtain the data from.

One idea is to connect our DT directly to the OAM, which is connected to the gNB and 5GC at the same time. This option allows to obtain data from the performance measurements that the OAM executes over all elements, and the state information that the OAM stores about them.

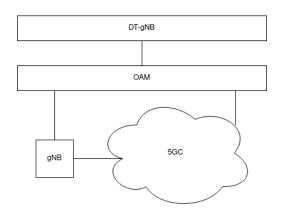


FIGURE 4-2: DEPLOYMENT OPTION 1.

Additionally, the DT can be deployed also inside the 5GC, as a NWDAF to collect, process and interpret the data, and some AF which get the processed data and take actions. This option can be separated into two different possibilities in function of the reliability given to the NWDAF block.

These deployments allow the DT to subscribe to the exposure events generated by the rest of blocks in the 5GC, which means, another way of obtaining information, in addition to through the OAM. However, the gNB does not generate these kinds of events.

Sending the information from the NWDAF to targets AFs also needs to be performed via exposure events.

If some block (either the NWDAF or an AF) is not trustworthy, they cannot directly subscribe to the events which expose the information; they must do it via the NEF.

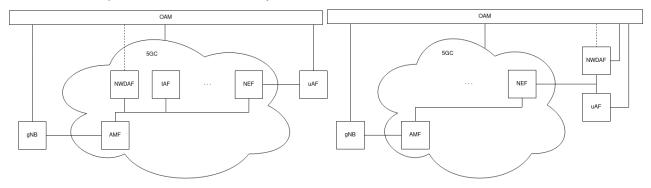


FIGURE 4-3: DEPLOYMENT OPTION 2.

FIGURE 4-4: DEPLOYMENT OPTION 3.

In both images, tAF represents a trusted AF, and uAF, an untrusted AF. Additionally, the connections from the OAM to the untrusted blocks is optional, and if it does not appear, one can access the data of the OAM using the exposure events of a trusted NWDAF (connected to the 5GC) providing this information.

4.2. Data structures available @gNB

Then, the only direct way of obtaining data from the gNB is through the OAM. It performs measurements over all blocks (including the gNB) and exposes the collected information.

In this subsection, the list of all possible performance measurements considered in the standard [13] that can be taken from the gNB is presented in Tables 4–1 to 4–3 [13]. Depending on the deployment of the gNB, they are different, as Table 4–2 and 4–3 shows.

Additionally, some of the measures are divided into sub-counters according to specific filter parameters detailed in [13].

TABLE 4-1: MEASUREMENTS VALID FOR ALL POSSIBLE DEPLOYMENTS OF THE GNB.

.

Group	Measure	Description
De diret D davi	DRB.AirlfDelayDl_Filter DRB.AirlfDelayDist.Bin_Filter DRB.AirlfDelayUl_Filter DRB.RlcDelayUl_Filter DRB.PdcpReordelayUl_Filter	Arithmetic mean delay over the air interface in DL. Distribution of delay over the air interface in DL. Arithmetic mean delay over the air interface in UL. Arithmetic mean delay of RLC packets in UL. Arithmetic mean PDCP reordering delay in UL.
Packet Delay	er	Distribution of delay between NG-RAN and UE in DL. Distribution of delay between NG-RAN and UE in UL. Arithmetic mean delay of GTP packets between PSA
	RRU.PrbTotDl	UPF and NG-RAN in DL. Total usage (percentage) of physical resource block's (PRBs) in DL.
	RRU.PrbTotUl	Total usage (percentage) of physical resource block's (PRBs) in UL.
	RRU.PrbTotDlDist.BinX RRU.PrbTotUlDist.BinX RRU.PrbUsedDl RRU.PrbAvailDl	Distribution of samples with total usage of PRBs in DL. Distribution of samples with total usage of PRBs in UL. Average number of PRBs used in DL for data traffic. Total number of PRBs in average available DL.
Radio resource utilization	RRU.PrbUsedUl RRU.PrbAvailUl RRU.MaxPrbUsedDl RRU.MaxPrbUsedUl RRU.PrbTotDlMimo	Average number of PRBs used in UL for data traffic. Total number of PRBs in average available UL. Maximum number of PRBs used in DL for data traffic. Maximum number of PRBs used in UL for data traffic. Total usage (percentage) of PRBs per cell for MIMO in
	RRU.PrbTotUlMimo RRU.PrbTotSdmDl	DL. Total usage (percentage) of PRBs per cell for MIMO in UL. Total usage (percentage) of PDSCH PRBs based on statistical MIMO layers.
	RRU.PrbTotSdmUl DRB.UEThpDl DRB.UEThpDlDist.Bin DRB.UEThpUl DRB.UEThpUlDist.Bin	Total usage (percentage) of PUSCH PRBs based on statistical MIMO layers. Average UE throughput in DL. Distribution of UE throughput in DL. Average UE throughput in UL. Distribution of UE throughput in UL.
UE throughput	DRB.UEUnresVolUl	Percentage of DL data volume for UEs in the unrestricted cell. Percentage of UL data volume for UEs in the unrestricted cell.
	RRC.ConnMean RRC.ConnMax	Mean number of users in RRC connected mode for each NR cell during each granularity period. Maximum number of users in RRC connected mode
RRC connection number	RRC.InactiveConnMean	for each NR cell during each granularity period. Mean number of users in RRC inactive mode for each
	RRC.InactiveConnMax	NR cell during each granularity period. Maximum number of users in RRC inactive mode during each granularity period.
PDU Session Mgmt	SM.PDUSessionSetupReq.SNSSAl SM.PDUSessionSetupSucc.SNSS Al	Number of PDU Sessions. Number of PDU Sessions successfully setup.
	SM.PDUSessionSetupFail.Cause	Number of PDU Sessions failed to setup.

	SM.MeanPDUSessionSetupReg.S	Mean number of PDU Sessions allocated in the
	NSSAI	NRCellCU.
	SM.MaxPDUSessionSetupReq.SN SSAI	Maximum number of PDU Sessions allocated in the NRCellCU.
	MM.HoPrepInterReq	Number of legacy handover preparations requested by the source gNB.
	MM.HoPrepInterSucc	Number of successful legacy handover preparations received by the source NR cell CU.
	MM.HoPrepInterFail.cause	Number of failed legacy handover preparations received by the source NR cell CU.
	MM.HoResAlloInterReq	Number of legacy handover resource allocation requests received by the target NR cell CU.
	MM.HoResAlloInterSucc	Number of successful legacy handover resource allocations at the target NR cell CU.
	MM.HoResAlloInterFail.cause	Number of failed legacy handover resource allocations at the target NR cell CU.
Mobility Mgmt – Inter-gNB handovers	MM.HoExeInterReq	Number of outgoing legacy handover executions requested by the source gNB.
	MM.HoExeInterSucc	Number of successful legacy handover executions received by the source gNB.
	MM.HoExeInterFail.UeCtxtRelCm d.cause	Number of failed legacy handover executions for the source gNB.
		Mean time of inter-gNB legacy handover executions during each granularity period.
	MM.HoExeInterReq.TimeMax.SN SSAI	Maximum time of inter-gNB legacy handover executions during each granularity period.
	MM.HoExeInterSSBSucc	Number of successful handover executions received by the source gNB per beam pair.
	MM.HoExeInterSSBFail.UeCtxtRel	Number of failed handover executions received by
	Cmd.cause	the source gNB per beam pair.
Mobility Mgmt –	MM.HoExeIntreReq	Number of outgoing intra gNB legacy handover executions requested by the source NRCellCU.
Intra-gNB handovers	MM.HoExeIntraSucc	Number of successful intra gNB legacy handover executions received by the source NRCellCU.
	MM.HoOut5gsToEpsPrepReq	Number of preparations requested by the source gNB for the outgoing handovers from 5GS to EPS.
	MM.HoOut5gsToEpsPrepSucc	Number of successful preparations received by the source gNB for the outgoing handovers from 5GS to EPS.
	MM.HoOut5gsToEpsPrepFail.caus e	Number of failed preparations received by the source gNB for the outgoing handovers from 5GS to EPS.
Mobility Mgmt –	MM.HoIncEpsTo5gsResAlloReq	Number of resource allocation requests received by the target gNB for handovers from EPS to 5GS.
Handovers between 5GS and EPS	MM.HoIncEpsTo5gsResAlloSucc	Number of successful resource allocations at the target gNB for handovers from EPS to 5GS.
	use	Number of failed resource allocations at the target gNB for handovers from EPS to 5GS.
	MM.HoOutExe5gsToEpsReq	Number of executions requested by the source gNB for handovers from EPS to 5GS.
	MM.HoOutExe5gsToEpsSucc	Number of successful executions at the source gNB for handovers from EPS to 5GS.
	MM.HoOutExe5gsToEpsFail.caus e	Number of failed executions at the source gNB for handovers from EPS to 5GS.

	MM HoOutEgeToEpsEallbackBrop	Number of EDS follback proparations requested by the
	Req	Number of EPS fallback preparations requested by the source gNB for the outgoing handovers from 5GS to
		EPS.
	MM.HoOut5gsToEpsFallbackPrep	Number of successful EPS fallback preparations
	Succ	received by the source gNB for the outgoing
		handovers from 5GS to EPS.
	MM.HoOut5gsToEpsFallbackPrep	Number of failed EPS fallback preparations received
	Fail	by the source gNB for the outgoing handovers from
		5GS to EPS.
		Number of successful EPS fallback executions at the
		source gNB for handovers from 5GS to EPS.
		Number of failed EPS fallback executions at the
	ail.cause	source gNB for handovers from 5GS to EPS. Mean time of EPS fallback whole handover during
	an	each granularity period.
		Mean time of EPS fallback handover executions during
	meMean	each granularity period.
Mobility Mgmt – RRC		Number of RRC release for EPS fallback redirection.
redirection	k	
measurement		
	MM.HoExeIntraFreqReq	Number of outgoing intra-frequency handover
		executions requested by the source NRCellCU.
Mobility Mgmt –	MM.HoExeIntraFreqSucc	Number of successful intra-frequency handover
Intra/Inter-frequency Handover related	MM HoEvelptorFreePeg	executions received by the source NRCellCU. Number of outgoing inter-frequency handover
measurements	MM.HoExeInterFreqReq	executions requested by the source NRCellCU.
measurements	MM.HoExeInterFreqSecc	Number of successful inter-frequency handover
		executions received by the source NRCellCU.
	MM.ChoPrepInterReq	Number of conditional handover preparations
	· · ·	requested by the source gNB.
	MM.ChoPrepInterSucc	Number of successful conditional handover
		preparations received by the source NR cell CU.
	MM.ChoPrepInterFail.cause	Number of failed conditional handover preparations
		received by the source NR cell CU.
	MM.ChoResAlloInterReq	Number of conditional handover resource allocation requests received by the target NR cell CU.
	MM.ChoResAlloInterSucc	Number of successful conditional handover resource
	while choices another succ	allocations at the target NR cell CU for the handover.
	MM.ChoResAlloInterFail.cause	Number of failed conditional handover resource
Mobility Mgmt –		allocations at the target NR cell CU for the handover.
handovers	MM.ConfigInterReqCho	Number of outgoing conditional handover candidates
		requested by the source gNB.
	MM.ConfigInterReqChoUes	Number of UEs that have been configured with
		conditional handover by the source gNB.
	MM.ChoExeInterSucc	Number of successful conditional handover
	MM ChoEvelnterReg TimeMoon S	executions received by the source gNB. Mean time of inter-gNB conditional handover
	NSSAI	executions during each granularity period.
	MM.ChoExeInterReq.TimeMax.S	Maximum time of inter-gNB conditional handover
	NSSAI	executions during each granularity period.
	MM.ChoPrepInterReqUes	Number of UEs for which conditional handover
		preparations were requested by the source gNB.

GOBIERNO DE ESPAÑA MINISTERIO DE ASUNTOS ECONÓMICOS Y TRANSFORMACIÓN DIGITAL

	MM.ChoPrepInterSuccUes	Number of UEs for which successful conditional handover preparations were received by the source NR cell CU.
	MM.ChoPrepInterFailUes.cause	Number of UEs for which conditional handover preparations failed, as received by the source NR cell CU.
	MM.ConfigIntraReqCho	Number of outgoing intra-gNB conditional handover candidates requested by the source NRCellCU.
Mobility Mgmt – Intra-gNB conditiona	MM.ConfigIntraReqChoUes	Number of UEs that has been configured with conditional handover by the source cell.
handovers	MM.ChoExeIntraSucc	Number of successful intra-gNB handover executions received by the source NRCellCU.
	MM.DapsHoPrepInterReq	Number of DAPS handover preparations requested by the source gNB.
	MM.DapsHoPrepInterSucc	Number of successful DAPS handover preparations received by the source NR cell CU.
	MM.DapsHoPrepInterFail.cause	Number of failed DAPS handover preparations received by the source NR cell CU.
Mobility Mgmt –	MM.DapsHoResAlloInterReq	Number of DAPS handover resource allocation requests received by the target NR cell CU.
Inter-gNB DAPS handovers	MM.DapsHoResAlloInterSucc	Number of successful DAPS handover resource allocations at the target NR cell CU for the handover.
nandovers	e	Number of failed DAPS handover resource allocations at the target NR cell CU for the handover.
	MM.DapsHoExeInterReq	Number of outgoing DAPS handover executions requested by the source gNB.
	MM.DapsHoExeInterSucc	Number of successful DAPS handover executions received by the source gNB.
	MM.DapsHoExeInterFail.UeCtxtR elCmd.cause	
Mobility Mgmt – Intra-gNB DAPS	MM.DapsHoExeIntraReq	Number of outgoing intra-gNB DAPS handovers requested by the source NRCellCU.
handovers	MM.DapsHoExeIntraSucc	Number of successful intra-gNB DAPS handovers received by the source NRCellCU.
	TB.TotNbrDlInitial	Total number of initial TBs transmitted on DL in a cell, excluding HARQ retransmissions.
	TB.IntialErrNbrDl TB.TotNbrDl.X	Number of initial faulty TBs transmitted on DL in a cell. Total number of TBs transmitted on DL in a cell, including successful and failed TBs during initial transmission and HARQ retransmissions.
	TB.ErrToltalNbrDl.X	Number of total faulty TBs transmitted on DL in a cell, including all I transmitted faulty TBs of initial transmission and re-transmission.
TB related measurements	TB.ResidualErrNbrDl	Number of final faulty TBs transmitted on DL in a cell at last HARQ retransmissions.
	TB.TotNbrUlInit TB.ErrNbrUlInitial	Total number of initial TBs on UL in a cell. Number of initial faulty TBs on UL in a cell.
	TB.TotNbrUl.X	Total number of TBs on UL in a cell, including successful and failed TBs during initial transmission
	TB.ErrToltalNbrUl.X	and HARQ retransmission. Number of total faulty TBs on UL in a cell, including all transmitted faulty TBs of initial and retransmission.
	TB.ResidualErrNbrUl	Number of final faulty TBs on UL in a cell.

	DRB.EstabAtt	Number of DRBs attempted to setup to support all requested QoS flows in the PDU sessions
	DRB.EstabSucc	Number of DRBs successfully setup to support all
		requested QoS flows in the PDU sessions
	DRB.RelActNbr	Number of abnormally released DRBs that were
		active at the time of release.
	DRB.SessionTime	Aggregated active session time for DRBs in a cell.
	DRB.InitialEstabAtt	Number of initial DRBs attempted to setup to support
DRB related		all requested QoS flows in the PDU sessions to be setup by the INITIAL CONTEXT SETUP REQUEST
measurements		messages.
	DRB.InitialEstabSucc	Number of initial DRBs successfully setup to support
		all requested QoS flows in the PDÚ sessions to be
		setup by the INITIAL CONTEXT SETUP REQUEST
		messages.
	DRB.ResumeAtt	Number of DRBs attempted to be resumed.
	DRB.ResumeSucc DRB.MeanEstabSucc	Number of DRBs successfully resumed. Mean number of DRBs that have been allocated
	DRB.MaxEstabSucc	Maximum number of DRBs that have been allocated.
	DRB.GTPUPathFailure	Number of DRB's prone to GTP-U Error Indication.
CQI related	CARR.WBCQIDist.BinX.BinY.BinZ	Distribution of Wideband CQI (Channel Quality
measurements		Indicator) reported by UEs in the cell.
	BinZ	NG-RAN
MCS related		Distribution of the MCS scheduled for PUSCH RB by
measurements	BinZ CARR.MUPDSCHMCSDist.BinX	NG-RAN. Distribution of the MCS scheduled for PDSCH RB by
		NG-RAN in MU-MIMO scenario.
	CARR.MUPUSCHMCSDist.BinX	Distribution of the MCS scheduled for PUSCH RB by
		NG-RAN in MU-MIMO scenario.
QoS flow related	QF.RelActNbr.QoS	Number of released QoS flows that were active at the
measurements –	QF.ReleaseAttNbr	time of release.
release	~	Number of QoS flows attempted to release.
QoS flow related measurements –	QF.SessionTimeQoS.QoS	Aggregated active session time for QoS flow in a cell
activity	QF.SessionTimeUE	Aggregated active session time for UEs in a cell.
	QF.EstabAttNbr	Number of QoS flows attempted to setup.
QoS flow related	QF.EstabSuccNbr	Number of QoS flows successfully established.
measurements –	QF.EstabFailNbr.Cause OF.InitialEstabAttNbr	Number of QoS flows failed to setup. Number of Initial QoS flows attempted to setup.
setup	QF.InitialEstabSuccNbr	Number of Initial QoS flows attempted to setup. Number of Initial QoS flows successfully established.
	QF.InitialEstabSuccial	Number of Initial QoS flows successibility established.
QoS flow related	QF.ModNbrAtt	Number of QoS flows attempted to modify.
measurements –	QF.ModNbrSucc	Number of QoS flows successfully modified.
modification	QF.ModNbrFail.cause	Number of QoS flows failed to modify.
	RRC.ConnEstabAtt.Cause	Number of RRC connection establishment attempts
RRC connection		for each establishment cause.
	RRC.ConnEstabSucc.Cause	Number of successful RRC establishments for each establishment cause.
measurements	RRC.ConnEstabFailCause	Number of failed RRC establishments.

	UECNTX.ConnEstabAtt.Cause	Number of attempted UE-associated logical NG-
UE-associated logical	OLCHTA.COMILStabAtt.Cause	connection establishments.
NG-connection		
related	UECNTX.ConnEstabSucc.Cause	Number of successful UE-associated logical NG-
measurements		connection establishments.
	RRC.ReEstabAtt	Number of RRC connection re-establishment
	INC. NCESTODAL	attempts.
	RRC.ReEstabSuccWithUeContext	Number of successful RRC connection re-
RRC connection Re-		establishment when UE context can be retrieved.
establishment	RRC.ReEstabSuccWithoutUeCont	Number of successful RRC connection re-
	ext	establishment when UE context can not be retrieved.
	RRC.ReEstabFallbackToSetupAtt	Number of RRC connection re-establishment
		attempts where no UE context could be retrieved.
	RRC.ResumeAtt.cause	Number of RRC connection resuming attempts.
	RRC.ResumeSucc.cause	Number of successful RRC connection resuming.
	RRC.ResumeSuccByFallback.caus	Number of successful RRC connection resuming by
	e	fallback to RRC connection
RRC connection		establishment.
resuming		Number of RRC connection resuming followed by
	Release	network release.
		Number of RRC connection resuming followed by network suspension.
	on RRC.ResumeFallbackToSetupAtt.	Number of RRC connection resuming attempts where
	cause	no UE context could be retrieved.
	PEE.AvgPower	Average power consumed over the measurement
Power, Energy and		period.
Environment (PEE)	PEE.MinPower	Minimum power consumed during the measurement
measurements – PNF		period
power consumption	PEE.MaxPower	Maximum power consumed during the measurement
		period.
PEE measurements –	PEE.Energy	Energy consumed.
PNF energy		
consumption		
PEE measurements –	PEE.AvgTemperature	Average temperature over the measurement period.
PNF temperature	PEE.MinTemperature	Minimum temperature over the measurement period.
	PEE.MaxTemperature	Maximum temperature over the measurement period.
PEE measurements –	PEE.Voltage	Voltage.
PNF voltage PEE measurements –	DEE Current	Current.
PEE measurements – PNF current		
PEE measurements –	PEE.Humidity	Percentage of humidity during the measurement
PNF humidity		period.
	RACH.PreambleDedCell /	Average number of RACH preambles received in a
	RACH.PreambleACell /	cell.
	RACH.PreambleBCell	
Received Random	RACH.PreambleDed.Ssb /	Average number of RACH preambles received in a
Access Preambles	RACH.PreambleA.Ssb /	cell per SSB.
	RACH.PreambleB.Ssb RACH.PreambleDist.Bin	Distribution of the number of RACH preambles sent
		by the UE when successfully accessing the network.
	RACH.AccessDelayDist.Bin	Estimate of the distribution of the RACH access delay.
		the first of the distribution of the forcer decess deay.

	MR.IntraCellSSBSwitchReq	Number of outgoing intra-NRCell SSB Beam switch
		executions requested by the source SSB Beam.
Intra-NRCell SSB Beam switch		
measurements	MR.IntrCellSuccSSBSwitch	Number of successful intra-NRcell SSB Beam switch executions received by the
		source SSB Beam.
RSRP measurement	L1M.SS-RSRP.Bin	Distribution of SS-RSRP per SSB in the cell. Distribution of SS-RSRP per SSB of a neighbour cell.
KSKP medsurement	L1M.RSRPEutraNbr.Bin	Distribution of RSRP per neighbour E-UTRA cell.
	DRB.MeanActiveUeDI_Filter	Mean number of active DRBs for UEs in an NRCellDU
	DRB.MaxActiveUeDl_Filter	in DL. Maximum number of active DRBs for UEs in an
Number of active LIFe		NRCellDU in DL.
Number of active UES	DRB.MeanActiveUeUl_Filter	Mean number of active DRBs for UEs in an NRCellDU in UL.
	DRB.MaxActiveUeUl_Filter	Maximum number of active DRBs for UEs in an NRCellDU in UL.
	5QI1QoSflow.Rel.Average.NormC allDuration	Average value of normally released call duration.
	5QI1QoSflow.Rel.Average.Abnor mCallDuration	Average value of abnormally released call duration.
5QI 1 QoS Flow		Histogram result of the samples related to normally
Duration monitoring	onBinX	released call duration collected during measurement period duration.
	50I10oSflow.Rel.AbnormCallDur	Histogram result of the samples related to abnormally
	ationBinX	released call duration collected during measurement
		period duration.
	HO.IntraSys.TooEarly /	Number of handover failure events related to MRO
	HO.IntraSys.TooLate /	detected during the intra-system mobility within 5CS.
	HO.IntraSys.ToWrongCell HO.InterSys.TooEarly /	Number of handover failure events delated to MRO
	HO.InterSys.TooLate	detected during the inter-system mobility between
		NG-RAN and E-UTRAN.
	HO.InterSys.Unnecessary	Number of unnecessary handover events detected during the inter-system mobility from NG-RAN to E-UTRAN.
	HO.InterSys.PingPong	Number of handover ping-pong events detected
Measurements		during the inter-system mobility between NG-RAN and E-UTRAN.
related to MRO	HO.IntraSys.bTooEarly.NCI /	Number of handover failure events per beam-cell pair
	HO.IntraSys.bTooLate.NCI /	related to MRO detected during the intra-system
	HO.IntraSys.bToWrongCell.NCI	mobility within 5GS.
	HO.InterSys.bTooLate.ECGI	Number of handover failure events per beam-cell pair related to MRO detected during the inter-system
		mobility from 5GS to EPS.
	HO.InterSys.bUnnecessary.ECGI	Number of unnecessary handover events per beam- cell pair detected during the inter-system mobility
		from 5GS to EPS.
	HO.InterSys.bPingPong.NCI	Number of handover ping-pong events per beam-cell
		pair detected during the inter-system mobility from
		5GS to EPS.
PHR measurement	L1M.PHR1.BinX	Histogram of Type 1 power headroom measurements.

		North an of CN 10 to the to a size of a source of the later
	PAG.ReceivedNbrCnInitiated	Number of CN Initiated paging records received by the gNB-CU.
	PAG.ReceivedNbrRanIntiated	Number of NR RAN Initiated paging records received by the gNB-CU.
	PAG.ReceivedNbr.	Number of paging records received by gNB-DU.
Paging measurement	PAG.DiscardedNbrCnInitiated	Number of CN Initiated paging records discarded at the gNB-CU.
	PAG.DiscardedNbrRanInitiated	Number of NG-RAN Initiated paging records discarded at the gNB-CU.
	PAG.DiscardedNbr	Number of paging records discarded at gNB-DU in cells.
SSB beam related measurement	L1M.SSBBeamRelatedUeNbr	Mean number of UE related the SSB beam index.
Transmit power utilization	CARR.MaxTxPwr	Maximum carrier transmit power in the measurement granularity interval.
measurements	CARR.MeanTxPwr	Mean carrier transmit power in the measurement granularity interval.
	CARR.MUPDSCHRB.BINX	Distribution of the scheduled PDSCH RBs per MU- MIMO layer.
	CARR.MUPUSCHRB.BINX	Distribution of the scheduled PUSCH RBs per MU- MIMO layer.
MU-MIMO related	RRU.MaxLayerDlMimo	Time-domain average maximum scheduled layer number for PDSCH.
measurements	RRU.MaxLayerUlMimo	Time-domain average maximum scheduled layer number for PUSCH.
	CARR.AverageLayersDl	Average value of allocated MIMO layers on DL per PRB per cell within the measurement period.
	CARR.AverageLayersUl	Average value of allocated MIMO layers on UL per PRB per cell within the measurement period.
	MR.NRScSSRSRQ.BinX	Distribution of SS-RSRQ received by gNB from UEs in the cell.
RSRQ measurement	MR.SS-RSRQPerSSB.Bin	Distribution of SS-RSRQ per SSB received by the gNB of a serving cell.
	MR.SS-RSRQ.SSBIndex.Bin	Distribution of SS-RSRQ per SSB received by the gNB of a neighbour cell.
	MR.NRScSSSINR.BinX	Distribution of SS-SINR received by gNB from UEs in the cell.
SINR measurement	MR.SS-SINRPerSSB.Bin	Distribution of SS-SINR per SSB received by the gNB of a serving cell.
	MR.SS-SINR.SSBIndex.Bin	Distribution of SS-SINR per SSB received by the gNB of a neighbour cell.
Timing Advance	L1M. ATADist.Bin	distribution of the Absolute Timing Advance values transmitted by the gNB to UEs in the cell.
Incoming GTP Data Packet Loss in gNB over N3	GTP.InDataPktPacketLossN3gNB	Number of GTP data packets which are not successfully received at gNB over N3.

TABLE 4-2:	MEASUREMENTS	FOR	NON-SPLIT	GNB.
	TALEWOOK FIAIFIALD	101	NON SILII	OITD.

Group	Measure	Description
	DRB.PdcpSduVolumeDL_Filter	Data Volume in DL delivered to PDCP layer.
PDCP Data Volume measurements – DL	DRB.PdcpSduVolumeX2DL_Filter	Data Volume in DL delivered on X2 interface in DC- scenarios.
	DRB.PdcpSduVolumeXnDL_Filter DRB.PdcpSduVolumeUL_Filter	Data Volume in DL delivered on Xn interface. Data Volume in UL delivered from PDCP layer to
		higher layers.
PDCP Data Volume measurements – UL	DRB.PdcpSduVolumeX2UL_Filter	Data Volume in UL delivered on X2 interface in NSA scenarios.
	DRB.PdcpSduVolumeXnUL_Filter	Data Volume in UL delivered on Xn interface in SA scenarios.
Packet Success Rate	DRB.PacketSuccessRateUlgNBUu	Fraction of PDCP SDU packets which are successfully received at gNB.

TABLE 4-3: MEASUREMENTS FOR SPLIT GNB.

.

Group	Measure	Description
•	DRB.PacketLossRateUl	Fraction of UL PDCP SDU packets which are not
		successfully received at gNB-CU-UP, including any
		packet losses in the air interface, in the gNB-CU and
		on the F1-U interface
Packet Loss Rate	DRB.F1UpacketLossRateUl	Fraction of UL PDCP SDU packets which are not
		successfully received at gNB-CU-UP on the F1-U
		interface.
	DRB.F1UpacketLossRateDl	Fraction of DL PDCP SDU packets which are not
		successfully received at gNB-CU-UP on the F1-U interface.
	DRB.PdcpPacketDropRateDl	Fraction of PDCP SDU packets which are dropped on
		DL in the gNB-CU-UP. Only user-plane traffic (DTCH)
		is considered.
Packet Drop Rate	DRB.RlcPacketDropRateDl	Fraction of RLC SDU packets which are dropped on
		DL in the gNB-DU. Only user-plane traffic (DTCH) is
		considered.
	DRB.PdcpSduDelayDl_Filter	Average PDCP SDU delay on DL within the gNB-CU-
		UP, for all PDCP packets.
	DRB.PdcpF1DelayDl_Filter	Average GTP packet delay DL on the F1-U interface.
	DRB.RlcSduDelayDl	Average RLC SDU delay on DL within the gNB-DU, for
		initial transmission of all RLC packets.
Packet Delay		Distribution of PDCP SDU delay on DL within the
	er DRB.GtpF1DelayDlDist.Bin_Filter	gNB-CU-UP, for all PDCP packets. Distribution of GTP packet delay DL on the F1-U
		interface.
	DRB.RIcSduDelavDlDist.Bin Filter	Distribution of RLC SDU delay on DL within the gNB-
		DU, for initial transmission of all RLC packets.
	DRB.RlcSduLatencyDl	Average IP Latency in DL within the gNB-DU, when
		there is no other prior data to be transmitted to the
IP Latency		same UE in the gNB-DU.
measurements	DRB.RlcSduLatencyDlDist.bin	Distribution of IP Latency in DL within the gNB-DU,
		when there is no other prior data to be transmitted to the same UE in the gNB-DU.
	UECNTX.RelReq.Cause	Number of UE CONTEXT RELEASE initiated by gNB-
	Centra Renequeurse	DU for each release cause.
UE Context Release	UECNTX.RelCmd.Cause	number of UE CONTEXT RELEASE initiated by gNB-
		CU for each release cause.
PDCP Data Volume	QosFlow.PdcpPduVolumeDL_Filt	Data Volume in DL delivered from GNB-CU to GNB-
measurements -	er	DU.
PDCP PDU	QosFlow.PdcpPduVolumeUl_Filte	Data Volume in UL delivered from GNB-DU to GNB-
	r	CU.
	QosFlow.PdcpSduVolumeDI_Filte	Data Volume in DL delivered to PDCP layer.
	r OgeFlowr DdenSdwy/glumgel H. Filt	Data Valuma in LIL dalivarad from PDCP
PDCP Data	er	Data Volume in UL delivered from PDCP layer to SDAP layer or UPF.
Volume		
measurements -	DRB.F1uPdcpSduVolumeDL_Filter	Data Volume in DL delivered from gNB-
PDCP SDU		CU-UP to gNB-DU (F1-U interface), to external gNB-
		CU-UP (Xn-U interface) and to external eNB (X2-
		Uinterface).

DRB.F1uPdcpSduVolumeUL_Fi	Iter Data Volume in UL delivered from gNB-
	CU-UP to gNB-DU (F1-U interface), to external gNB-
	CU-UP (Xn-U interface) and to external eNB (X2-
	Uinterface).
MM.HoPrepIntraReq	Number of outgoing intra-gNB legacy handover
· · · ·	preparations requested by the source NRCellCU.
MM.HoPrepIntraSucc	Number of successful intra-gNB legacy handover
	preparations received by the source NRCellCU.
MM.ChoPrepIntraReq	Number of outgoing intra-gNB conditional handover
· · · ·	preparations requested by the source NRCellCU.
MM.ChoPrepIntraSucc	Number of successful intra-gNB conditional handover
·	preparations received by the source NRCellCU.
MM.DapsHoPrepIntraReq	Number of outgoing intra-gNB DAPS handover
	preparations requested by the source NRCellCU.
MM.DapsHoPrepIntraSucc	Number of successful intra-gNB DAPS handover
· · ·	preparations received by the source NRCellCU.
MM.ChoPrepIntraRegUes	Number of UEs for which outgoing intra-gNB
	conditional handover preparations are requested by
	the source NRCellCU.
MM.ChoPrepIntraSuccUes	Number of UEs for which intra-gNB conditional
	handover preparations received by the source
	NRCellCU are successful.
	MM.HoPrepIntraReq MM.HoPrepIntraSucc

4.3. Data structures available @5GC

For some specific situations or functionalities, it may be interesting to collect data from entities of the 5GC. To reach that information, there exists two possible alternatives: we can obtain the data from the OAM, or via the subscription to the exposure events that each entity of the 5GC executes. The list of all performance measurements of the 5GC entities that can be executed is presented in [13], and the information that can be retrieved from the exposure events for each block of the 5GC is listed in [7], with their procedure detailed in [14].

As the first deployment option explained in section 4.1 is not connected to the 5GC, the only possible way of obtaining data from the 5GC entities is through the OAM.

In case of being untrustworthy and wanting to collect data from entities of the 5GC via exposure events, it is mandatory to subscribe to them through the NEF, as it is explained before. The procedure to achieve it is detailed in [14].

4.4. Additional information

Despite providing such a large amount of data, in this section is proposed extra information which can be useful at the time of developing a gNB DT and it is not considered to be exposed in the standards. Hence, the decision of exposing it and how to do it resides in each particular vendor:

• Additional information related to the physical radio layer, e.g. the channel band, the bandwidth, the subcarrier spacing, duplex scheme, modulation, scheduling scheme.

- UE capability information.
- Type of gNB, in case the vendor has developed more than one.
- Information related to the latency in the response of the servers holding the applications.
- KPI derating factor.

5. Minimum data required for a gNB DT

Obviously, not all data is necessary for all applications. In other words, the data that is required to construct the DT depends on the function that is sought. As an example, if one is interested in predicting periodic changes in energy consumption, it might be thought that the only measurement needed to develop the DT is the one which extracts the value of the energy consumed (named PEE.Energy).

In the following subsections, it is provided some examples of applications from the literature that can be deployed, and the minimum data required for constructing the DT is presented.

5.1. Required data for vrAIN

vrAIN is a controller of dynamic resources for virtualization of RANs, presented in [15], which helps to enhance the performance of the network, saving computational capacity, meeting better QoS and improving the throughput. The input of this algorithm is information referred to the Signal to Noise Ratio (SNR) and arrival data.

One can find these information using the following measurements: MR.NRScSSSINR provides the distribution of SNR received by the gNB; and, to obtain the arrival data, for example, DRB.UEThpDI and DRB.UEThpUI can be used, which provide the average UE throughput in downlink and uplink, respectively.

5.2. Required data for DeepCog

In [16], DeepCog is presented. It is a novel data analytic tool which predicts traffic demands of network slices and reallocates the resources of the network, taking into account the operator's desires. To achieve its objective, it needs some input data, which is (as it is explained in the document) the demand of the network in terms of signal quality, occupied resource blocks or bytes of traffic, among others.

One option is to obtain this kind of information from RRU.PrbUsedDl and RRU.PrbUsedUl measurements, which provides the total number of physical resource blocks (PRBs) on average available in downlink or uplink, respectively. These particular measurements can be divided into different counters depending on the QoS class.

6. References

[1] 3GPP, NG general aspects and principles, Radio Access Network working group, Technical Specification (TS) 38.410, Release 17, 2022-06-23.

[2] 3GPP, NR and NG-RAN Overall Description, Radio Access Network working group, Technical Specification (TS) 38.300, Release 17, 2022–09–29.

[3] 3GPP, F1 general aspects and principles, Radio Access Network working group, Technical Specification (TS) 38.470, Release 17, 2022–09–23.

[4] 3GPP, E1 general aspects and principles, Radio Access Network working group, Technical Specification (TS) 38.460, Release 17, 2022-04-06.

[5] 3GPP, NG-RAN; Architecture description, Radio Access Network working group, Technical Specification (TS) 38.401, Release 17, 2022-09-23.

[6] 3GPP, Xn general aspects and principles, Radio Access Network working group, Technical Specification (TS) 38.420, Release 17, 2022–09–23.

[7] 3GPP, System architecture for the 5G System (5GS), Service and System Aspects working group, Technical Specification (TS) 23.501, Release 17, 2022–09–22.

[8] Flávia Pires et al., "Digital Twin in Industry 4.0: Technologies, Applications and Challenges," in 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), vol. 1, 2019, 721–726.

[9] Maryam Farsi et al., eds., *Digital Twin Technologies and Smart Cities*, Internet of Things (Springer Cham, n.d.), accessed December 14, 2022, <u>https://link.springer.com/book/10.1007/978-3-030-18732-3</u>.

[10] Tolga Erol, Arif Furkan Mendi, and Dilara Doğan, "The Digital Twin Revolution in Healthcare," in 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 2020, 1–7.

[11] Peter Bilello, "Outlook 2023: Digital Twins Will No Longer Be an Option," *Engineering.Com*, last modified November 22, 2022, accessed December 14, 2022, https://www.engineering.com/story/digital-twins-from-today-to-2023-and-beyond.

[12] Cheng Zhou et al., *Digital Twin Network: Concepts and Reference Architecture*, Internet Draft (Internet Engineering Task Force, December 2, 2021), accessed December 14, 2022, <u>https://datatracker.ietf.org/doc/draft-zhou-nmrg-digitaltwin-network-concepts/06/</u>.

[13] 3GPP, Management and orchestration; 5G performance measurements, Service and System Aspects working group, Technical Specification (TS) 28.552, Release 18, 2022–09–23.

[14] 3GPP, Procedures for the 5G System (5GS), Service and System Aspects working group, Technical Specification (TS) 23.502, Release 17, 2022–09–22.

[15] Jose A. Ayala-Romero et al., "VrAIn: A Deep Learning Approach Tailoring Computing and Radio Resources in Virtualized RANs," in *The 25th Annual International Conference on Mobile*

Computing and Networking, MobiCom '19 (New York, NY, USA: Association for Computing Machinery, 2019), 1–16, accessed December 14, 2022, https://doi.org/10.1145/3300061.3345431.

Dario Bega et al., "DeepCog: Cognitive Network Management in Sliced 5G Networks with [16] Deep Learning," in IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, 2019, 280-288.

